
GridServer Developer’s Guide
Version 4.2

The GridServer Developer’s Series
Proprietary and Confidential

Confidentiality and Disclaimer

Neither this document nor any of its contents may be used or disclosed without the express written consent
of DataSynapse. This document does not carry any right of publication or disclosure to any other party.

While the information provided herein is believed to be accurate and reliable, DataSynapse makes no
representations or warranties, express or implied, as to the accuracy or completeness of such information.
Only those representations and warranties contained in a definitive license agreement shall have any legal
effect. In furnishing this document, DataSynapse reserves the right to amend or replace it at any time and
undertakes no obligation to provide the recipient with access to any additional information. Nothing
contained within this document is or should be relied upon as a promise or representation as to the future.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.
(www.openssl.org/).

This product includes code licensed from RSA Data Security (java.sun.com/products/jsse/LICENSE.html).

DataSynapse GridServer Developer’s Guide Version 4.2
Copyright © 2005 DataSynapse, Inc. All Rights Reserved.

GridServer® is a registered trademark, DataSynapse, the DataSynapse logo, LiveCluster™, and
GridClient™ are trademarks, and GRIDesign is a servicemark of DataSynapse, Inc.

Protected by U.S. Patent No. 6,757,730. Other patents pending.

WebSphere® is a registered trademark and CloudScape™ is a trademark of International Business
Machines Corporation in the United States, other countries, or both. All other product names are trademarks
or registered trademarks of their respective companies.

DataSynapse, Inc. 632 Broadway, 5th Floor; New York, NY 10012
Tel: 212.842.8842 Fax: 212.842.8843
Email: info@datasynapse.com Web: www.datasynapse.com

For technical support issues and product updates, please visit customer.datasynapse.com.

We appreciate any comments or suggestions you may have about this manual or other DataSynapse
documentation. Please send your feedback to docs@datasynapse.com.

04220102105

http://www.apache.org/
http://www.openssl.org/
http://java.sun.com/products/jsse/LICENSE.html
mailto:info@datasynapse.com
http://www.datasynapse.com
http://customer.datasynapse.com
mailto:docs@datasynapse.com

Contents

Confidentiality and Disclaimer ..2
Contents ...3
Chapter 1 - Introduction ..9

Before you begin ...9
GridServer 4.2 Documentation Roadmap ...9

GridServer Guides ..9
Other Documentation and Help ..10

Document Conventions ...11
Chapter 2 - GridServer Application Development ..13

GridServer Programming Options ..13
Services ...13
The Tasklet API ..13
PDriver ..14

Resource Deployment ...14
Logging and Debugging ...15

Log Overview ...15
Viewing Engine Logs ...15
Writing to Logs ...16
Debugging Engines ...18

C++ Compiler Version Notes ...19
Changing the C++ Compiler used with CPPDriver ..19
C++ Multithreading Requirement ...19
VC++ settings for building Job executable ...20
VC++ settings for building tasklet library ..20
Other C++ Notes ...20

.NET Compiler Notes ...20

.NET Driver Upgrades ..20
Chapter 3 - Creating Services ..23

Introduction ...23
Steps in Using a Service ...23
Service Method Compliance ...24

Java/.NET Services ...24
C++ Services ...24
Command Services ...24

Client Calling Conventions ...25
Java/.NET Client ...25
C++ Client ...25
SOAP Client ...25

Registering a Service Type ...26
Container Binding ...26
.NET AppDomains ...27

Language Interoperability ...27
Strings and Byte Arrays ..27
Object Conversion from Strings and Byte Arrays ..28
XML Serialization for Java and .NET ..28
GridServer Developer’s Guide 3
•
•
•
•
•
•

4

Interoperable Types for XML Serialization and SOAP Clients29
Maintaining State ..30
Initialization ..30
Cancellation ..31
Destruction ..31
Service Instance Caching ..31
Invocation Variables ...31

Chapter 4 - Accessing Services ...33
Introduction ...33
The Service API ..33
Web Services ..33

Service Routing ...34
Web Service Functionality ..34
Advanced Functionality ..34
Service Instance Creation/Destruction ..35
Asynchronous Submission ..35
State Updates ..36
Fault Handling ..36
Authentication ...36

Proxy Generation and Services as a Web Service Binding ..37
Java Proxy Example ..37
.NET Proxy Example ..38

Service Options ...38
Service Session Context ..38
Shared Services ...38
Service Groups ..39
Data References ..39

C++ Data References ..40
Service Collection ...40

Deferred Collection ...40
No Collection Service ...42

Engine Pinning ..43
Chapter 5 - The Tasklet API ..45

Introduction ...45
The Tasklet API ..45
TaskInput and TaskOutput ..45
Tasklet ...46
Job ...46
JobOptions ..46
Job and Service Comparison ...47
Summary ...47

Chapter 6 - PDriver ...49
Installing PDriver ..49

Resource Deployment ...49
PDriver Commands ...49

The pdriver Command ..50
The bsub Command ..50
 – Table of Contents
•
•
•
•
•
•

This Document is Proprietary and Confidental

The bcoll Command ..51
The bstatus Command ..52
The bcancel Command ...52

About PDS Scripts ..53
PDS Basics ..53
PDS Structure ...54
The Depends Statement ..55
The Include Statement ..55
Lifecycle Blocks ...55
prejob ..56
pretask ...56
task ..56
posttask ...56
postjob ...56
The Options Block ..56
The Discriminator Block ..62
The Schedule Block ..62

Variables, Types and Expressions ..63
Basics ..63
Scoping ...63
Variable Substitution ..63
Expressions ...64
Arrays ..64
Builtin Variables ...66

Statements ...67
Builtin Commands ..67
The If Statement ..68
The For and Foreach Statement ..69
MPI Jobs ...69
Shell Directives in Heterogeneous Environments ..70

PDriver Examples ...71
Chapter 7 - GridCache ..73

Introduction ...73
General Capabilities ..73

API ..73
Modes ..74
Cache Configuration and Access ..74
Data Storage ..74
Attributes ..74
Consistency/Synchronization ..75
Cache Loaders ...75
Cache Loader Write-through and Bulk Operations ..76
Notification ...76
Disk/Memory Caching ..76
Cache Region Scope ...77

Using The GridCache API ..77
GridCache constructor with CacheFactory ...77
GridServer Developer’s Guide 5
•
•
•
•
•
•

6

Put and Get ...77
Keys ...77
Remove ...77
Clear ..77
Invalidation handlers ...78

Fault Tolerance and GridCache ..78
Chapter 8 - GridServer Design Guidelines ..79

Data Movement ...79
Principles of Data Movement ...79
Data Movement Mechanisms ...79
Data Movement Examples ..81

Service or Task Duration ..83
Engine Interruption and Smoothing ..83
Auto-packing ..84
Summary ...84

Chapter 9 - Using Discriminators ..85
Introduction ...85
Engine Discrimination ..85
Setting Discriminators ..85
Engine Properties ..86

Default Properties ...86
Custom Properties ...87
Creating a New Property ...87
Setting a Property Value ...87

Session Properties ...87
PDriver Discrimination ...87
Dependencies ..88

Creating Dependencies ...88
Administering Task Dependencies ...88

Chapter 10 - GridServer Admin API ...89
Introduction ...89
Documentation for the GridServer Admin API ..89
Access Level Requirements and Availability for Admin API ..89
Using The ServiceClient Web Service ...92
Using the Admin API over SOAP ..92

Chapter 11 - Extending GridServer ...93
Introduction ...93
Manager Hooks ...93
Engine Hooks ..94

Chapter 12 - API Extensions ..97
Introduction ...97
StreamJob and StreamTasklet ...97
DataSetJob and TaskDataSet ..97
The Propagator API ..98

Using the Propagator API ...98
GroupPropagator ...99
NodeTasklet ..99
 – Table of Contents
•
•
•
•
•
•

This Document is Proprietary and Confidental

GroupCommunicator ..99
A Propagator API Example ..100

Appendix A - Task Instrumentation ...105
Introduction ...105

Client ...105
Action ..105
Object ..106

Phases ..106
Driver-side ...106
Engine-side ...107
Broker-side ..108
DDT file writes ...108
Native ..108

Appendix B - SOAPActions ..109
Index ...111
GridServer Developer’s Guide 7
•
•
•
•
•
•

8
 – Table of Contents
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 1

• • • • • •
 Introduction

This guide is your reference for developing applications that utilize GridServer installations. It is divided
into several sections to help you understand the principles of the GridServer system, and how to program
using the GridServer API.

Before you begin
This guide assumes that you already have a GridServer Manager running and know the hostname, username,
and password. If this isn’t true, see the GridServer Installation Guide or contact your administrator.

GridServer 4.2 Documentation Roadmap
The following documentation is available for GridServer 4.2:

GridServer Guides
Four guides and four tutorials are included with GridServer in Adobe Acrobat (PDF) format. They are also
available in print format. To view the guides, log in to the Administration tool, select the Admin tab, go to
the Documentation page, and select a guide. A search engine is also available on this page for you to search
all of the documentation for a phrase or keywords. The PDF files can also be found on the Manager at
livecluster/admin/docs. The following guides are available:

Introducing the GridServer Platform Series:

Introducing the GridServer Platform Contains an introduction to GridServer, including
definitions of key concepts and terms, such as work,
Engines, Directors, and Brokers. This should be read first if
you are new to GridServer.

The GridServer Administration Series:

GridServer Administration Guide Covers the operation of a GridServer installation as
relevant to a system administrator. It includes basic theory
on scheduling, fault-tolerance, failover, and other concepts,
plus howto information, and performance and tuning
information.

GridServer Installation Guide Covers installation of GridServer for Windows and Unix,
including Managers, Engines, and pre-installation planning.
GridServer Developer’s Guide 9
•
•
•
•
•
•

1

GridServer 4.2 Documentation Roadmap
Other Documentation and Help
In addition to the GridServer guides, you can also find help and information from the following sources:
GridServer Administration Tool Help Context-sensitive help is available throughout the GridServer
Administration Tool by clicking the help icon located on any page. This provides reference help, plus how-
to topics.
API Reference Reference information for the GridServer API is provided in the GridServer SDK in the docs
directory. The Java API information is in JavaDoc format, while C++ documentation is presented in HTML,
and .NET API help is in HTMLHelp. You can also view and search them from the GridServer
Administration Tool; log in to the Administration Tool, click the Admin tab, and select the Documentation
link.
Knowledge Base A searchable archive of known issues and support articles is available online. To access
the DataSynapse Knowledge Base, go to the DataSynapse customer extranet site at
customer.datasynapse.com and log in. You can also use this site to file an issue report, download product
updates and licenses, and view documentation.

The GridServer Developer Series:

GridServer Developer’s Guide Contains information on how to develop applications for
GridServer, including information on using Services,
PDriver (the Batch-oriented GridServer Client), the theory
behind development with the GridServer Tasklet API and
concepts needed to write and adapt applications.

GridServer Object-Oriented Integration
Tutorial

Tutorial on developing applications for GridServer using
the object-oriented Tasklet API in Java or C++.

GridServer Service-Oriented Integration
Tutorial

Tutorial on developing applications for GridServer using
Services, such as Java, .NET, native, or binary executable
Services.

GridServer PDriver Tutorial Tutorial on using PDriver, the Parametric Service Driver, to
create and run Services with GridServer.

GridServer COM Tutorial Tutorial explaining how client applications in Windows can
use COMDriver, GridServer’s COM API, to work with
services on GridServer.
0 Chapter 1 – Introduction
•
•
•
•
•
•

This Document is Proprietary and Confidental

http://customer.datasynapse.com

Document Conventions

Convention Explanation Example

italics Book titles The GridServer Developer’s Guide describes
this API in detail.

“Text in quotation
marks”

References to chapter or section
titles

See “Preliminaries.”

bold text Emphasizes key terminology

Interface labels or options

Client applications (Drivers) submit work to a
central Manager.

Enter your URL in the Address box and click
Next.

Courier New User input, directories, file names,
file contents, and program scripts

Run the script in the /opt/datasynapse
directory.

Blue text Hypertext link. Click to jump to the
specified page or document.

See the GridServer Developer’s Guide for
details.

[GS Manager Root] The directory where GridServer is
installed, such as c:\datasynapse
or
/opt/datasynapse.

The Driver packages are located in
[GS Manager

Root]/webapps/livecluster/WEB-

INF/driverInstall
GridServer Developer’s Guide 11
•
•
•
•
•
•

./developers-guide.pdf

1

Document Conventions
2 Chapter 1 – Introduction
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 2

• • • • • •
 GridServer Application Development

This section of the GridServer Developer’s Guide is your starting point for developing applications that
utilize your GridServer installation. The document is divided into several chapters to help you understand
the principles of the GridServer system, and how to program applications utilizing GridServer.

GridServer Programming Options
There are several options available to you when you adapt your applications to use GridServer. The
following sections describe how to use each of them.

Services
Services provide for remote execution of code in a way that is scalable, fault-tolerant, dynamic and
language-independent. Services can be written in a variety of languages and do not need to be compiled or
linked with DataSynapse code. There are client-side APIs to create Service Sessions using Java, C++, COM,
and .NET, as well as a Web Services interface. A Service object on a client can create and use a Service
implemented in the same or another languages. In the Service model, requests on the client are routed over
the network, ultimately resulting in invocations on a remote machine, and response values make the reverse
trip.

With GridServer, Services are virtualized; rather than send a request directly to the remote machine hosting
the Service Session, a client request is sent to the GridServer Manager, which enqueues it until an
appropriate Engine is available. The GridServer Manager selects which Engine should service a request. The
first Engine to dequeue the request hosts the Service Session. Subsequent requests may be routed to the same
Engine or may result in a second Engine running the Service concurrently. (For information on how this
decision is made see Chapter 5, “Scheduling” on page 29 of the GridServer Administration Guide for
details.) If an Engine hosting a Service Session should become unavailable, another will take its place. This
mechanism, in which a single virtual Service Session is implemented by one or more physical Sessions
(Engine processes) provides for fault tolerance and essentially unlimited scalability.

Chapter 3, “Creating Services” on page 23 details how to implement Services; Chapter 4, “Accessing
Services” on page 33 explains how to utilize Services in your application.

The Tasklet API
The Tasklet API, available in Java, using JDriver, and C++, using the CPPDriver, is a forerunner to the
Services approach, and is suitable when your application code on both Driver and Engine are written in C++
or Java, the work you will distribute can be logically broken down into units of work that can run
independently and combine for a final result, and your application can be refactored to include GridServer
API calls directly in your code.

The Tasklet API consists of four types of objects: Tasklet, TaskInput, TaskOutput, and Job.
GridServer Developer’s Guide 13
•
•
•
•
•
•

1

Resource Deployment
A Tasklet is the Service implementation that is created on the Engine side. It packages the computation’s
common data and behavior needed to run one unit of work in the overall problem being distributed. A
Tasklet is a concrete Service object that contains a method for doing the work, as well as other methods for
lifecycle management. A Tasklet takes a TaskInput as input, operates on it, and produces a TaskOutput as
output. A TaskInput packages the data and code that is unique to one work unit in the overall computation,
and the TaskOutput packages the results of an individual unit of work.

A Job object, represents the overall group of work being computed. The Job is the coordinator of the
individual work units or tasks. Using a Job object, your application creates a Job specific Tasklet, submits
TaskInputs, and processes the TaskOutputs as they arrive.

Chapter 5, “The Tasklet API” on page 45 explains how to use the Tasklet API.

PDriver
The Parametric Job Driver, or PDriver, is a Driver that can execute command-line programs as a parallel
processing service using the GridServer environment. This enables you to write a simple script to run a
program on several Engines, and return the results to a central location.

PDriver scripts, which are written in the PDS scripting language, enable you to run the same program on
Engines several times with different parameters. A script is used to define how these parameters change.

One way PDriver scripts can achieve parallelism is to iteratively change the value of variables that are
passed to successive tasks as parameters. A script can step through a range of numbers and use each value
as a parameter for each task that is created. Or, a variable can be defined containing a list of parameters.

Chapter 6, “PDriver” on page 49 explains how to use PDriver.

Resource Deployment
Service Deployment files that are used by Engines are centrally managed, starting at the Director. Files can
be uploaded to the Director via the Resource Deployment page on the Services tab in the Administration
Tool. The resources centrally located on Director are then synchronized to Brokers, which then synchronize
them with Engines.

Grid Libraries (or GLs) are the enterprise-level method of deploying resources to Engines. They are an
archive containing a set of resources and properties necessary to run a Grid Service, along with configuration
information that describes how those resources are to be used. Grid Libraries can contain Java classes and
JARs, native libraries, .NET assemblies, configuration files, Java system properties, Engine hooks, and
alternate JREs needed to run a Service. They can also contain references to other GLs as dependencies. A
Service Session can use a GL by setting the appropriate options for the Service Type used by the session.

The tools/grid-library directory of the SDK includes an example ANT build script that can be used to
build Grid Libraries. The services examples in the SDK can be automatically packaged as Grid Libraries
by using this script and included configuration files. Each service example contains grid-library.xml and
grid-library-build-properties files. The tools directory contains build.xml, build.bat and build.sh,
which parse the grid-library-build-properties files to create Grid Libraries.

For more information on packaging and deploying Grid Libraries, see Chapter 7, “Application Resource
Deployment” on page 43 in the GridServer Administration Guide.
4 Chapter 2 – GridServer Application Development
•
•
•
•
•
•

This Document is Proprietary and Confidental

Logging and Debugging
GridServer contains comprehensive logging facilities on Engines. This can be used to diagnose problems
with Services running on Engines, and your application can write information to these logs. This section
contains an overview of GridServer’s log facility, plus information on using it from your application, and
how to attach a debugger to an Engine, if needed.

Log Overview
The DataSynapse logger is used to provide diagnostics messages to the console and to file. This section
covers how to access these logs, and how to interface with the loggers.

The DataSynapse logger is based on the java.util.logging.Logger model, in terms of its log levels. A quick
overview of levels, in order:

Typically, the Info level is sufficient for most purposes, although in some cases you may need to log at Fine
level to diagnose certain issues. Finer or Finest levels are rarely useful, unless debugging a detailed issue,
as they may degrade performance and introduce unnecessary logging that may make it more difficult for
diagnosing problems. When running a production Grid that requires very fast performance, you may wish
to decrease the level to Warning so that only problems are reported.

The log format is: {timestamp} {level}: [{component}] {message}

Only messages that are at or above the current log level will be logged.

An example of a log message:
09/20/05 19:19:10.423 Info: [BrokerServicePlugin] Broker:Total:1

Viewing Engine Logs
There are several ways of viewing the logs. The most straightforward is to view the actual log files via the
Log URL List in the GridServer Administration Tool.

To view an Engine log:

1. In the Administration Tool, click the Engine tab, then click the Engine Admin page.
2. Find the Engine for which you want to view a log, and from its Actions list, select Log URL List.

Level Description

Severe Indicates serious failures

Warning Indicates potential problems

Info Displays informational messages

Config Displays static configuration messages

Fine Provides tracing information

Finer Indicates a fairly detailed tracing message

Finest Indicates a highly detailed tracing message
GridServer Developer’s Guide 15
•
•
•
•
•
•

1

Logging and Debugging
3. A window will open with a list of links for each of the logs residing on that Engine, listed by date
and time. Click a link to download and view that log.

You may also wish to view the logs in real time. You can do this via the remote log applet.

To use the remote log applet:

1. In the Administration Tool, click the Engine tab, then click the Engine Admin page.
2. Find the Engine for which you want to view a log, and from its Actions list, select Remote Log.
3. An applet window will open, displaying the log on the Engine as events occur. You can click Clear

to clear the log, or Snapshot to capture a screen of the log in a new window.
You can also run the Engine in console mode; typically, this would only be done during development.
Windows: You can run the Engine from a command line with the command engine.exe -console. This
starts the Engine in console mode, and logging information will scroll on the command window from which
it was started.

Unix: You can run the Engine from a command line with the command engine.sh startfg. This starts the
Engine in the foreground, and logging information will scroll on the terminal from which it was started.

By default, a Unix Engine will detach the stdout from your native Tasklet code. If you wish to see the stdout,
set the DSNODETACHSTDOUT environment variable in the shell from which you start the Engine for the first
time. The variable can be set to any value. Then, the stdout can be found in the profiles/<engine-
name>/logs/engine.out file.

The Engine Log Search page enables you to search for all Severe-level Engine logs for a Service ID across
all Engines, and optionally search those results for a keyword. Results are shown with a summary of each
matching log for each Engine, with links to corresponding log URLs with excerpts. First, logs are searched
for the given Service ID; then they are searched for the regular expression “.*Severe.*”, then they are
optionally searched for a given keyword.

To search Engine logs:

1. In the Administration Tool, click the Engine tab, then click the Engine Log Search page.
2. Enter a Service Session ID in the Service ID box, or select a name from the Service Name list.

Service Names are provided only when the Reporting Database is available.
3. Enter a keyword in the Keyword box, or leave it blank to return all entries.
4. Click Search.
Results are shown with a summary of each matching log for each Engine, with links to corresponding log
URLs.

Writing to Logs
Your Service will typically also log messages, and you may want these to be logged to the DataSynapse
logger.
Java

Both Drivers and Engines capture stdout and stderr, so typically no changes need to be made to existing
implementations to capture logs.
6 Chapter 2 – GridServer Application Development
•
•
•
•
•
•

This Document is Proprietary and Confidental

Additionally, the DataSynapse logger is registered as the Apache Commons Logging default handler. If your
implementation uses this interface, your messages will be logged automatically. The following is a map of
levels to DataSynapse levels:

.NET

The .NET System.Diagnostics.Trace facility is used for logging; the DataSynapse logger is simply a Trace
listener. The DataSynapse logger will capture any messages written to the Trace facility. This includes .NET
Services; any trace message written by the service will be logged to the Engine log.
C++

The UtilFactory::log function is the preferred method of logging to the DataSynapse log. It can be used on
both the Engine and Driver. If it is necessary to capture native stdout messages on the Engine, there is a hook
available from DataSynapse to do so. Note that the logging is only effective after the Driver message server
has been instantiated — for instance, after creating a Job or Service object, or after calling
DriverManager::login.
PDriver

The PDS script language provides redirection of stdout and stderr to a file, via the stdout and stderr
clauses in the execute statement. For example:

execute
stdout="$DSWORKDIR/pijob.$DSTASKID.out"
stderr="$DSWORKDIR/error.$DSTASKID"
".\resources\win32\lib\PdriverPiCalc.exe $seed $iterations"

Writing to the Log directory

The Engine’s log directory is always the [work directory]/log. Any files written to this directory can be
viewed via the Log URL list. This allows you to write log messages to your own files, and view them via
the Administration Tool.

The work directory is available as follows:

• Java: The system property ds.WorkDir
• .NET: The System.AppDomain.CurrentDomain data value ds.WorkDir
• C++, Command Service: The environment variable ds_WorkDir
• PDriver: The variable $DSWORKDIR

Commons DataSynapse

fatal Severe

error Severe

warn Warning

info Info

debug Fine

trace Finer
GridServer Developer’s Guide 17
•
•
•
•
•
•

1

Logging and Debugging
Debugging Engines
This section covers the basics on how to attach a debugger to an Engine when necessary to do so. It is
intended as a quick aid in getting up and running; it is expected that the developer is familiar with debugging.

Java

The Java Platform Debugger Architecture (JPDA) allows for the connection of a debugger to the Engine via
a socket. To open the socket for debugging, add the following to the Command line-Arguments parameter
in the Engine Configuration of an Engine you wish to debug:
-Xdebug -Xnoagent -Xrunjdwp:transport=dt_socket,server=y,address=[port],suspend=[y/n]

[port]: The port you wish to open

[y/n]: Whether to suspend the process from starting until the debugger is connected. Typically “n”, as
normally you would wait until the Engine logs in and becomes idle, then connect the debugger, and then
run the service you wish to debug.

Note that you must only be running a single Engine instance from the Engine Daemon, as an additional
instance will not be able to open the same port.
.NET, Windows DLL

Microsoft Visual Studio comes with a remote debugging facility. To debug, you must first make sure that
you build with debug symbols, and deploy the symbols (PDB) file with the DLL. Once the engine has logged
in, you attach the debugger to the invoke.exe process via the Processes dialog on the Debug menu.
CPPDriver and Linux

GDB can be used to debug native code in CPPDriver or JNI in Linux. Also, GDB can be useful in identifying
unusual problems with the Linux JVM. However, there are some subtle issues when trying to use GDB on
a JVM, as is the case with the GridServer Engine.

First, when attaching GDB to the Engine, you must specify the LD_LIBRARY_PATH to both the Engine
components and the JVM components. You must also obtain the process ID of a running invoke (or
invokeGCC3) process from the ps command. It's also easier if you run GDB from the base directory of the
Engine install (typically DSEngine) . The GDB command used is similar to this:
LD_LIBRARY_PATH=lib:jre/lib/i386:jre/lib/i386/native_threads:jre/lib/i386/server:resources/lib
/linux gdb bin/invoke $INVOKEPID

bin/invoke should be replaced with bin/invokeGCC3 when using GCC3.

This method of running GDB works well for troubleshooting rare JVM problems. However when you are
troubleshooting CPPDriver code, a different method should be used. The issue is that CPPDriver loads your
application shared objects only when the Tasklet or Service is instantiated, so it becomes difficult to set a
breakpoint in the application shared object. (However, more recent versions of GDB feature deferred symbol
resolution, which makes this possible.) Further, attaching GDB to a running JVM often has undesired side
effects, including halting the JVM depending on the versions of JVM, pthreads, and GDB being used.
8 Chapter 2 – GridServer Application Development
•
•
•
•
•
•

This Document is Proprietary and Confidental

The following procedure details how to use GDB with CPPDriver code:

1. Create a GDB initialization file with two commands, one to set the breakpoint and the other to
continue. If you take the time to set the breakpoint manually, you risk exceeding some timeouts
which will cause the Engine instance to exit. For example, create a file called yourtest.gdb
containing the following:
break YourTest.cpp:42

cont

2. Have your Service client call a no-op or initialization method to get the service library (.so) loaded.
You can call any Service method that doesn't affect the code being debugged. For instance, you
could call a method that retrieves the version of the library being debugged, like getVersion(). If
such a method doesn't exist, you can add something similar to your Service.

3. Attach GDB to the process using the initialization file created in the first step above:
gdb -x yourtest.gdb bin/invoke $ENGINEPID

4. Run the client code used to call the Service method you want to debug.

C++ Compiler Version Notes

Changing the C++ Compiler used with CPPDriver
The CPPDriver and Service bridge libaries are built for nearly all standard compilers used on Windows,
Linus, and Solaris. You must link your client application and/or service implementation with the appropriate
libraries for the compiler.

You must also run any C++ services against the proper C++ bridge libraries. Typically this is done using
Grid Libraries, in that any C++ Grid Library must include the proper bridge Grid Library as a dependency
These libraries come already deployed in the [GS Manager Root]/webapps/livecluster/deploy.

If you are not using Grid Libraries, you can only use one compiler type for all services per Engine
Configuration, and the library must be located in the configuration’s Default Library Path. The default
libraries are already deployed in the [GS Manager Root]/webapps/livecluster/deploy.

Also, because different Linux releases support different compilers which use incompatible versions of the
STL, the GCC Version property in the Engine Configuration dictates which compiler version of the bridge
is supported by the Engine. If using Grid Libraries, you can build your application against all versions you
need to support and use the OS element to specificy the proper path of each library. If not using Grid
Libraries, you can place all bridge libraries in the [GS Manager Root]/webapps/livecluster/deploy.

C++ Multithreading Requirement
Note that all C++ code must be complied multithreaded. This includes both Service and Tasklet code, and
Engine or Driver code.
GridServer Developer’s Guide 19
•
•
•
•
•
•

2

.NET Compiler Notes
VC++ settings for building Job executable
In order to build a Job executable with Visual C++, you must set the following settings:

1. The Use run-time library setting, located in the Project Setting dialog box on the C++ page in the
Code generation category, must be set to Multithreaded DLL.

2. Enable exception handling.
3. Enable Run-Time Type Information(RTTI.)

VC++ settings for building tasklet library
In order to build the Tasklet library with Visual C++, you must set the following settings:

1. The Use run-time library setting, located in the Project Setting dialog box on the C++ page in the
Code generation category, must be set to Multithreaded DLL.

2. Define BUILD_TASKLET_DLL for the project.
3. Enable exception handling.
4. Enable Run-Time Type Information(RTTI.)

Other C++ Notes
When linking code, you should ensure that your code links with the dsUtil library.

Note that when using GCC 3, launching Jobs from an Engine is not supported.

.NET Compiler Notes
The GridServerNetClient.dll references DSJavaNetBridge, which isn’t needed for clients. This may give a
build warning about DSJavaNetBridge, but does not cause any issues other than the warning message.

.NET Driver Upgrades
As of GridServer 4.0, the .NET Driver (GridServerNETClient.dll) is now strongly named. This means that
whenever a new version of the .NET Driver is released, via an upgrade, Service Pack or Patch, steps need
to be taken for existing clients to allow the assembly to be loaded.

There are two ways of doing this:

• Rebuild the .NET application with the new GridServerNETClient.dll.
or

• Configure the application to allow the new version.
This may be done in various ways, depending on your .NET policy; that is, whether the assembly is deployed
into the GAC or used locally, and so on.

An example of the how to do this when the GridServerNETClient.dll is used locally, is as follows:
Method 1: Using the “Microsoft .NET Framework 1.1 Configuration” tool

1. To start the tool, click the Control Panel menu, click the Administrative Tools, then click
Microsoft .NET Framework 1.1 Configuration.
0 Chapter 2 – GridServer Application Development
•
•
•
•
•
•

This Document is Proprietary and Confidental

2. From the Applications menu, click Add an Application To Configure.
3. If your application is in the list, select it; otherwise, find it using the Other… button.
4. Your application is now in the Applications list. Expand your application, and choose Assembly

Dependencies.
5. Drag the GridServerNETClient, noting the version number, to the Configured Assemblies icon.
6. Click the Configured Assemblies icon. Double-click GridServerNETClient, and choose Binding

Policy.
7. Under Requested Version, enter the version you noted in step 5. This is the version that your

application was built with. Under New Version, enter the new version of the
GridServerNETClient.dll that have just installed. This allows your application to bind with the new
version even though it was built with a previous version.

Method 2: Directly creating the file

In Method 1, the .NET tool creates an Application Configuration file in the directory of the application.
However, you may simply create this file yourself.

1. Create a file next to you application executable called my.exe.config, where my.exe is the name of
your executable.

2. Add the following as the file’s content:
<?xml version="1.0"?>
<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="GridServerNETClient" publicKeyToken="42129437978483df" />
 <bindingRedirect oldVersion="4.0.0.12-4.0.0.14" newVersion="4.0.0.15" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

Note that the oldVersion is the version your application was built with, and the newVersion is the version of
the new assembly. In this example, oldVersion is a range of versions. If your applications already had a
configuration file, it should be edited appropriately.

If you have a .NET Service implementation that links to the GridServerNETClient.dll, you do not need
perform either of these steps. An invoke.exe.config file is included in any .NET upgrade that manages this
for you. However, you may rebuild your implementation if you wish.
GridServer Developer’s Guide 21
•
•
•
•
•
•

2

.NET Driver Upgrades
2 Chapter 2 – GridServer Application Development
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 3

• • • • • •
 Creating Services

Introduction
Services provide for remote, parallel execution of code in a way that is scalable, fault-tolerant, dynamic and
language-independent. Services can be written in a variety of languages and do not need to be compiled or
linked with DataSynapse libraries. There are client-side APIs in Java, C++, COM, and .NET, as well as a
Web Services interface. A client written in one language can invoke a Service written in another.

The basic Service execution model is the same as that of other distributed programming solutions: method
calls on the client are routed over the network, ultimately resulting in method calls on a remote machine,
and return values make the reverse trip. We prefer the term request to call or invocation, partly because the
operation may be either synchronous or asynchronous.

Services are suitable for implementing parallel processing solutions in which a single computation is split
into multiple, independent pieces whose results are combined. This is accomplished by dividing up the
problem, submitting the individual requests asynchronously, then combining the results as they arrive.
Services also work well for executing multiple, unrelated serial computations in parallel.

Steps in Using a Service
 Using a Service involves six steps:

1. Writing the Service, or adapting existing implementations. A Service can be virtually any type
of implementation: a library (DLL or .so), a .NET assembly, a Java class, a command, script or
executable, or even an Excel spreadsheet. A Service does not need to be linked with any
DataSynapse libraries, but the remotely callable methods of the Service have to follow certain
conventions to enable cross-language execution and to support stateful Services. These conventions
will be described below.
Example code utilizing Services is available in the GridServer SDK. Also, more examples of how to write
Services are available in the GridServer Service-Oriented Integration Tutorial.

2. Deploying the Service. The implementation and other resources required for the Service must be
accessible from all Engines. This can be accomplished via a shared file system or GridServer’s
resource deployment mechanism.

3. Registering the Service Type. To make the Service visible to clients, it must be registered as a
Service Type in the GridServer Administration Tool.

4. Creating a Service Session from a Client. A Client Application is developed that accesses the
registered Service Types and creates a Service Session. Each Service Session may have its own state
that is client-specific. Because of virtualization, a single Service Session may correspond to more
than one physical instance of the Service, such as more than one Engine running the Service’s code.

5. Making requests. The methods of a Service implementation are called by the Client Application
either synchronously or asynchronously.
GridServer Developer’s Guide 23
•
•
•
•
•
•

2

Service Method Compliance
6. Destroying the Service Session. Client Applications should destroy a Service Session when they
are done with it.

This chapter describes how to develop a Service Implementation, which will actually run on an Engine.
Chapter 4, “Accessing Services” on page 33 describes how to use this Service Implementation from a Client
Application.

Service Method Compliance
Although Service methods do not link to DataSynapse libraries, they must comply with a set of rules so that
they may be used properly.

Java/.NET Services
• The Service class and all methods called by the client must be public.
• A method may take any number of arguments, and may have a return type of void. The return values of

state methods are ignored, and a null will be returned by a Service method with a void return type.
• If the Service is to be used cross-language or accessed by a SOAP client, the arguments and return values

must conform to the rules of interoperability, as described in the section “Interoperable Types for XML
Serialization and SOAP Clients” on page 29.

• If the Service will only be used by a client of the same language, any serializable object may be used for
arguments and return values.

• Overloaded methods are not allowed.
• Methods can throw exceptions within a Service, which will capture and include stack trace data and

nested exception data when available.
• In Java, if a Service will be accessed as a Web Service, and a method has a throws clause, it must be

throws Exception, because the WSDL generator can only handle the Exception class. You may still throw
any descendant of Exception.

C++ Services
• All methods must be public.
• The Service method must either take a char*, or a char** for multiple arguments. Alternatively, if using

the macro it can take a std:string or a vector of std:strings.
• The method returns data via a char** argument, which is set to the returned data. Alternatively, if using

the macro it returns a std:string.
• Overloaded methods are not allowed.

Command Services
• The name of the method that is called is appended to the command line.
• Argument values are sent to stdin or an input file. If there is more than one argument, the data is separated

by the argDelimiter, which can be registered on the Service.
• Argument values may instead be appended to the command line, if the option is selected. In this case,

they should be passed in as strings by the client.
• If your command spawns subprocesses, it must cancel them if the main command is cancelled.
4 Chapter 3 – Creating Services
•
•
•
•
•
•

This Document is Proprietary and Confidental

Client Calling Conventions
Clients must comply with the following rules when calling methods in a Service.

Java/.NET Client
• Arguments are passed into calls as an Object[], which corresponds to the arguments of the method. Note

that it MUST be exactly of type Object[]. For instance, a set of strings cannot be passed in as a String[].
The array length must match the number of arguments.

• For convenience, if the method takes only a single argument, it may be passed directly into the call. It is
the equivalent of passing in an Object[1] with the 0th element being the object.

• If a method takes no arguments, it can only be called with zero-length Object[] or a null object.
• Primitive types are converted to their object equivalents automatically. For example, a Service method

that returns a double will return a Double on the client.

C++ Client
• Arguments are passed into calls as a char**. Alternatively, if using the macro found in

DynamicLibraryFunctions.h, it can be a vector of std:string.
• If a method takes no arguments, it can only be called with a null or zero-length char* or string.

SOAP Client
SOAP clients are created by using the WSDL that is generated for the Service using the Service Type
Registry. The SOAP package that you are using should then create the client proxy when given this WSDL.

Java and .NET Services introspect Services and state methods and create types accordingly, so the proxy
methods will reflect the Service Implementation.

C++ and Command services generate WSDL operations for all methods in the same manner. All methods
take an xsd:anyType[] as an argument, and Service methods return xsd:anyType. The input array MUST
correspond to an object array of string and/or byte[]s for the calling language. For instance, if the language
is Java, it must be an Object[] which contains Strings and/or byte[]s. It cannot be a String[] or byte[][].
GridServer Developer’s Guide 25
•
•
•
•
•
•

2

Registering a Service Type
Registering a Service Type
Service Types must be registered in the
GridServer Administration Tool on the primary
Director, on the Service Type Registry page
under the Service tab. Service Types registered
on the Director are then replicated to Brokers. A
list of existing Service Types appears on that
page, along with a line for adding a new Service
Type. Enter the Service Type name on the blank
line. Select a Service Implementation, then
click Add.

In the window that appears after clicking the
Add button, enter any name, property or option
values for the Service Type.

Container Binding
Every Service has an associated Container Binding, which binds the Service implementation (the library or
command) to the Container of the Service (the Engine). The container binding essentially describes how the
implementation is to be used.

The binding contains the following fields:

All methods used must be bound to one of these methods. All methods are optional except serviceMethods.

Additionally, the binding also contains the following, currently only applicable to Java and .NET:

Field Description
initMethod Called when a Service Session is first used on an Engine. It is called prior to any

requests or updates.

destroyMethod Called when a Service Session is destroyed.

cancelMethod Called when the invocation is cancelled if KILL_CANCELLED_TASKS is false for this
Service. It is used to interrupt the request if the user does not want the Engine to
restart on a cancel

serviceMethods Methods that will perform a request and return a response. These are the actual
methods that perform the calculations. The * character can be used to denote all
methods that are not bound to any other action.

appendStateMethods Updates state, appending to previous updates.

setStateMethods Updates state, and flushes the list of previous updates.

Field Description

xmlSerialization Whether XML serialization is used to serialize objects. See “Interoperable Types for
XML Serialization and SOAP Clients” on page 29 for more details.

FIGURE 3-1: The Service Type Registry page.
6 Chapter 3 – Creating Services
•
•
•
•
•
•

This Document is Proprietary and Confidental

.NET AppDomains
Services implemented in .NET have full access to .NET’s AppDomain functionality, including managing
multiple persistent AppDomains across Service invocations, while preserving access to the entire
DataSynapse Engine-side API. You can specify an AppDomain as part of a Grid Library deployment and
the Engine will set up and manage it automatically.

The Provider section in the Service Type Registry for .NET Services supports an appDomainName value; set
this to specify a unique AppDomain for Services created from this Service Type.

When an AppDomain is specified as part of a Service Type definition and an Engine creates the Service for
the first time, the Assembly search paths used for the AppDomain depend on how resources are deployed.
When a Service uses a Grid Library, the assembly-path pathelements for that Grid Library (and any
dependent Grid Libraries) are used as the Assembly search paths for the AppDomain.When a Grid Library
is not used, the default Assembly search path is used.Once the Assembly search path is determined, the
Engine searches it for a valid AppDomain Configuration File, which has the same name as the AppDomain,
plus the .config suffix.

The unloadAppDomain property in the Service Type Registry enables you to specify what happens to non-
default AppDomains once all Service Sessions using them have been destroyed. Select true to unload
AppDomains after they are no longer being used.

Language Interoperability
Services provide various levels of interoperability among languages. To provide this interoperability,
GridServer can perform conversions on arguments sent to objects. The following describes how arguments
are converted between Service Implementations.

Strings and Byte Arrays
All Services can use byte arrays (byte[]s) interchangeably with Strings as arguments. Whenever any
conversion is performed, it is done using UTF-8 encoding. For example, if an argument is of type String,
and the client passes in a byte[], the byte[] will be UTF-8 encoded and passed into the method as a String.

Because a C++ Service always returns a string/char*, the returned type of an invocation must be converted
to a String or byte[]. The type of conversion made is based on the first argument to the invocation. If a
string is passed in as the first argument, it will return a string, and if it is passed a byte[], it will convert the
string to a byte[]. If there are no arguments, it will return a byte[]. This is most relevant for a .NET or SOAP
client, as string I/O must be ASCII. If you are returning binary data, make sure that the first argument is a
byte[].

TargetPackage The package (Java) or namespace (.NET) into which the generated proxy classes
will be placed. If not set, the name of the Service is used.

Note: When the targetPackage name is not set in the Service Type Registry page
and a generated proxy is used, deserialization errors will occur. To remedy this, edit
the Service Type on the Service Type Registry page of the GridServer
Administration Tool and assign a value for the targetPackage property.

Field Description
GridServer Developer’s Guide 27
•
•
•
•
•
•

2

Language Interoperability
A Command Service will only convert the output data to a String if the first argument is a String, and the
appendArgsToCommandline option is false.

Java and .NET Services do not convert return values if they are Strings or byte[]s.

Object Conversion from Strings and Byte Arrays
Java and .NET Services will automatically attempt to convert String/byte[]s to and from Objects when
necessary. This can be useful when calling these Services from a different language, or when using Service
Runners from Batches.

If an argument is not a String or byte[], and it is passed in as such, an attempt will be made to convert it. If
the data is a byte[], it will first be converted to a String. Then the String will be converted to the Object as
follows:

If the return value is not a String/byte[], and the client is not of the same language as the Service, the
returned value will be converted to a String, as follows:

XML Serialization for Java and .NET
XML serialization provides the following features

Input Argument String Argument-to-Object Conversion

Primitives The primitive wrapper class’s parse method

Date, Calendar (Java) DateFormat.getDateTimeInstance().parse

DateTime (.NET) DateTime.Parse

org.w3c.dom.Document (Java) Uses the parse method from the DocumentBuilder given by
DocumentBuilderFactory.newInstance().newDocumentBuilder()

XmlDocument (.NET) XmlDocument.loadXml

Other If the class has a constructor that takes a single String as an argument,
it will use that constructor.

Return Type Returned Object-to-String Conversion

Primitives The object-equivalent toString() method

Date, Calendar (Java) DateFormat.getDateTimeInstance().format

DateTime (.NET) date.ToUniversalTime().ToString("r",
DateTimeFormatInfo.InvariantInfo)

org.w3c.dom.Document (Java) The transform method from the Transformer given by
TransformerFactory.newInstance().newTransformer()

XmlDocument (.NET) doc.WriteTo(XmlTextWriter)

Other The toString method is used.
8 Chapter 3 – Creating Services
•
•
•
•
•
•

This Document is Proprietary and Confidental

• It allows Java and .NET to use rich objects as arguments and return values with each other.
• It allows a client to use a Service with such objects, without needing the original implementation classes.

This is because client-side proxy classes are generated.
To use XML serialization, it must be enabled on the Service Type. Note that by enabling this, the other
interoperability conversions are no longer used. Additionally, the client must use the proxy that is generated
using the Service Type Registry, which contains all user-defined types.

The arguments and return values on such services must be Interoperable Types, as discussed in the following
section.

Interoperable Types for XML Serialization and SOAP Clients
When using XML Serialization, or when such a Service will be accessed via the Web Service interface, the
parameters and return types must be interoperable, or interop, types. These types are the generally accepted
SOAP interop types, and are as follows:

The following is an example of a Java Interop type:

Type Description

Primitives byte, byte[], double, float, short, int, long, string, or Calendar (Java) or
DateTime (.NET).

Arrays The type may be an array of any interop type.

User-Defined Types User-defined types can be used, as long as they follow the standard “bean” pattern. For
both languages, all data must be interoperable types (including other user- defined
types.) For Java, all data must be Java Bean properties; that is, each must have public
get/set methods. For .NET, all data must be public fields. When generating a proxy for
this Service type, user-defined types will result in generated classes. You may have
other data and methods in the type, such as private non- interop fields, but they will be
ignored and not reflected in the generated class. Also, user-defined types must be
concrete; abstract classes and interfaces are not allowed.

Data References This type can be used as an argument, return type, or GridCache object, and is
interoperable whether XML Serialization is on or off. For more information on Data
References, see “Data References” on page 39.

Example 3.1: Java Interop Type Example
public class Valuation {
 private java.util.Calendar valuationDate;
 private double value;
 private MarketData

 public Valuation() {
 }

 public java.util.Calendar getValuationDate() {
 return valuationDate;
 }
GridServer Developer’s Guide 29
•
•
•
•
•
•

3

Maintaining State
The following is an example of a .NET Interop type:

Maintaining State
To maintain state on a Service, you would typically use a field or set of fields in your object to maintain that
state. (For C++ or Command Services, state is saved in a slightly different manner.) Because a Service
Session can be virtualized on a number of Engines, adjusting a field’s value using a Service request will only
adjust that value on the Engine that processed that request. Instead, you must declare the appropriate class
method as a stateful method in the Service Type Registry, and use the updateState method to guarantee that
all Engines will update the state. All methods that are used to update the state must be registered as such on
the Service type, either as one of the setStateMethods or appendStateMethods.

When an Engine processes a Service request, it first processes all update state calls that it has not yet
processed, in the order in which they were called on the Service instance. These calls are made prior to the
execution of the request. The append value is used to determine whether previous update calls should be
made. If append is false (a “set”), all previous update calls are ignored. If append is true, all calls starting
from the last “set” call will be performed. Typically, then, “append” calls would be used to update a subset
of the state, whereas a “set” call would refresh the entire state. If your Service instance is intended to be a
long running state with frequent updates, you should on a regular basis use a “set” call so that Engines just
coming online do not need to perform a long set of updates the first time they work on this Service instance.

Initialization
The initMethod, one of the container binding fields defined above, is typically used to initialize the state on
a Service that maintains state. It may be also used for other purposes, such as establishing a database
connection. The initMethod is called with the initialization data the first time an Engine processes a request
on a Service instance. It will also be called prior to an updateState call if it has not already been called.

 public void setValuationDate(java.util.Calendar valuationDate) {
 this.valuationDate = valuationDate;
 }

 public double getValue() {
 return value;
 }

 public void setValue(double value) {
 this.value = value;
 }
}

Example 3.2: .NET Interop Type Example
 [Serializable]
 public class Valuation {
 public DateTime valuationDate;
 public double value;
 }

Example 3.1: Java Interop Type Example (Continued)
0 Chapter 3 – Creating Services
•
•
•
•
•
•

This Document is Proprietary and Confidental

Cancellation
A request may be cancelled for a number of reasons. It can be directly cancelled by the Admin interface or
Administration Tool, or it will be cancelled if the Service Session is cancelled. If the killCancelledTasks
option is true for this Service, the Engine process will simply exit, and the Engine will restart. However, in
many cases it is not necessary to do so, and you would prefer to simply interrupt the calculation so that the
Engine becomes immediately available.

In this case, the killCancelledTasks option should be false, and a cancelMethod should be implemented and
registered on this Service type. This method must interrupt any Service method that is in process. It is also
possible for the cancelMethod to be called after the Service method has finished processing, so the
implementor must take this into account.

If a request is cancelled due to the Service being cancelled, the cancelMethod will be called prior to the
destroyMethod.

Destruction
Often times a Service will need to perform some cleanup on the Engine when the instance is destroyed, such
as closing a database connection. If so, a destroyMethod should be implemented and registered on the
Service type. This method will be called whenever a Service instance is destroyed. It will also be called on
any active Service Sessions on an Engine whenever an Engine shuts down.

Service Instance Caching
Engines maintain a cache of all Engine Service Instances that are currently active on that Engine, set by the
Engine Configuration. If an Engine is working on too many Sessions, Engine Service Instances may be
pushed out of the cache. In this case, the destroyMethod is called, and it is as if the Engine has not yet worked
on that Service. That is, if it processes a subsequent request, it will initialize and update as if it were the first
time it worked on that Service.

Invocation Variables
While a Service implementation can be completely independent of DataSynapse libraries, there are certain
occasions on which you may need to interact with the GridServer environment on the Engine. This is
accomplished via variables that are retrieved in various ways dependent on the type of Service:
Java: System properties

DynamicLibrary: Environment variables, with the same name as Java variables, except with dots replaced
with underscores. You can also use symbolic constants provided by DynamicLibraryFunctions.h.

.NET: System.AppDomain.CurrentDomain data values
Command: Environment variables, with the same name as Java variables, except with the dots replaced
with underscores

The Engine provides the following variables:

Variable Description
ds.ServiceSessionID The unique identifier for the Service Session being invoked.
GridServer Developer’s Guide 31
•
•
•
•
•
•

3

Invocation Variables
In addition, any environment variables available on the Engine will also be available in the Engine Service
Instance.

ds.ServiceInvocationID A number uniquely identifying the invocation (task) of the Service
instance.

ds.ServiceCheckpointDir The directory that the Service should use for reading and writing
of checkpoint data, if checkpointing is enabled for the Service.

ds.ServiceInfo If this variable is set in an invocation, the value will be displayed
in the Task Admin upon completion of the invocation.

ds.WorkDir The work directory for the Engine. This variable is set to the directory
from which the Service is executed; by default, it is
./work/machinename-instance, relative to the Engine installation
directory, where machinename is the name of the machine running the
Engine, and instance is the number of the Engine instance. For
example, a single Engine machine will have a machinename-0
directory; one with two Engine instances will also have a
machinename-1 directory. In each Engine instance directory, there is
a log directory containing Engine logs, and a tmp directory.

Note that the tmp directory is periodically deleted by the Engine. The
Temp File Time-to-Live (hours) setting in each Engine
Configuration controls the frequency with which the Engine cleans
this directory.

ds.DataDir The data directory for the Engine, which is the directory in which
DDT data is stored. The cleanup frequency is also controlled by the
Engine Configuration.

ds.GridLibraryPath A path made by concatenating the root directories of all the
expanded and loaded Grid Libraries.

Variable Description
2 Chapter 3 – Creating Services
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 4

• • • • • •
 Accessing Services

Introduction
This chapter provides a detailed description of how to access and utilize Services with GridServer, with three
different methods:

The Service API — A GridServer Driver provides an interface between a client application written in Java,
C++, .NET, or COM. It provides methods and an API that can be used to develop applications that can then
access Services.
Web Services — Typically, you would use Web Service interface when your client cannot use one of the
GridServer Drivers, such as if your client code is written in a language other than C++, Java, .NET, or COM.
Also, you may prefer to use this interface if you are standardized on Web Services and you are already
utilizing a rich SOAP client toolkit.

Proxy — GridServer can automatically generate of a client proxy class that mirrors the registered Service
Type. This proxy generation mimics the WSDL proxy generation of a Web Service; the difference is that the
proxy makes its calls via a Service object on a Driver rather than using SOAP over HTTP.

The Service API
Services can be accessed by using the Service API in Java, C++, .NET or COM to develop an application.
Each of these Drivers contain API documentation describing how to do this. For example, when using Java,
refer to the Javadocs found in the GridServer Administration Tool, for the package
com.datasynapse.gridserver.client. The Service class is used to access the Service either synchronously
or asynchronously.

Further examples of developing applications using the GridServer APIs can be found in the GridServer
Service-Oriented Integration Tutorial.

Web Services
The Web Services interface provides a mechanism for a client to create and use Service Sessions, without
the need for a Driver. The Service can be used by a client that is implemented in a language that supports
Web Services using SOAP over HTTP. Web Services hosted by GridServer can also be stateful, like
Services, and support Service options.

Any registered Service type is automatically exposed as a Web Service. For Java and .NET, arguments and
return values must be standard Web Service interop types. See Chapter 3, “Creating Services” on page 23
for more details.
GridServer Developer’s Guide 33
•
•
•
•
•
•

3

Web Services
Service Routing
The Director has a DriverAdmin Web Service, which has a method called getServicesURL(String
serviceName), which returns the URL of the Service on a Broker suitable for the Driver Profile associated
with the user. This Broker is chosen in the same manner a Broker is chosen for a DataSynapse Driver.
Alternatively, a client can select a specific Broker with which to route SOAP requests directly.

Web Service Functionality
The WSDL for this Service is obtained by using the Service Registry page in the GridServer Administration
Tool, or at a URL which has the following form:

http://host:port/livecluster/services/ServiceName?WSDL

The serviceURL can be obtained from the DriverAdmin Web Service on a Director, as mentioned above.

A default Service instance is always available at the serviceURL. Any methods designated as service
methods in the binding can be run as RPCs. These calls will be executed on any available Engine.

The default Service instance is created when a Service is accessed like a Web Service. This same Service
instance will be used by any other attempts to access the Service like a Web Service until it times out; a later
attempt to similarly access the Web Service will cause it to be created again. This process is transparent to
the user. However, if you wish to use state with a Web Service, you must initialize it differently. This is
covered in “Service Instance Creation/Destruction”, below.

In this way, the Web Service behaves just like any deployed Web Service, in that the Service provides WSDL
and processes SOAP RPCs. The difference is that these RPCs are distributed to Engines and executed in
parallel, rather than serially as in a typical Web Service provider.

The WSDL generated from Java and .NET uses introspection to generate the exact argument and return
types. For dynamic library and command services, the argument type will always be an “array of anything”
(which really has to be an array of strings or byte arrays) and the return type is anything. Furthermore, the
methods generated in the WSDL are the ones specified in the Service Type Registry and no others (since
there is no introspection), whereas in the Java and .NET cases you can write "*" for the list of service
methods, and it will find all public methods.

The endpoint in the WSDL returned will point to the Broker from which you generated the WSDL. To get
proper Broker routing, you have to go through the Director using the ServiceManager Web Service in order
to get a Broker URL and assign that URL to your client’s proxy.

Advanced Functionality
Management of Service instances, state, and asynchronous submission/collection is also provided, and
handled by the use of the SOAPAction attribute. The appropriate attribute, based on the container binding, is
automatically attached to the corresponding operation in the WSDL.

NOTE: In order to take advantage of this, your SOAP client must maintain its session.
4 Chapter 4 – Accessing Services
•
•
•
•
•
•

This Document is Proprietary and Confidental

Service Instance Creation/Destruction
Because the Web Services specification does not account for how to create and manage stateful Web
Services, the init and destroy methods (that is, the operations associated with initMethod and destroyMethod
in the container binding) of a Web Service will behave differently when hosted by GridServer. The operation
associated with the initMethod in the container binding is used to create a new Service Session. If the
Service does not have an init method, a default create operation is added automatically. This session is
independent of the default session and any other sessions of this Service Type. It is essentially the same as
using the Service Factory to create a new session using the API. The return value from the operation is the
URL of this new session, and will be of the form [service URL]/[id], where id is the Service ID. For
example (on a proxy generated in C#):

// create the Service
ExampleService service = new ExampleService();
// create a stateful Service instance by calling the initMethod,
// and assign the URL to the new instance's URL.
service.Url = service.create(...);

Calling the create method on the proxy does not directly call the corresponding method on the Service.
Instead, you have to reset the proxy’s endpoint to the endpoint of the new Service session as above. When
you make the first method invocation on the new session, that Service’s create method will be called prior
to the first method invocation. The method of changing your endpoint may vary depending on what client
you are using (gSoap, Axis, and so forth.)

A destroy operation is also added, which destroys the session. If you have a destroyMethod registered, the
operation will be that method. Otherwise, a destroy operation is added.

Asynchronous Submission
Every method registered as a serviceMethod has an additional asynchronous operation created for it. The
name is [method name]_Async, and the return value is the ID (string) of the invocation, which can be used
for collection.

An additional operation is provided called collectAsync. This method takes a single ID (string) argument
as its input. If the value of the argument is null, it collects the next result, otherwise it collects the result for
that ID. The operation returns two values. The first is an invocation result value, and the second is the ID of
the invocation. If the ID is null, the next available invocation result value is returned; otherwise, the value
for the provided ID is returned. The result of a collectAsync call can be one of five states:

• The returned ID is non-null. In this case, the result value is the result for that ID.
• The returned ID is null, but the result is a long. In this case, it is the amount of time, in msecs, that the

client should wait before polling again.
• Both the ID and result are null. This means that there are no outstanding results to collect.
• A SOAP Fault is returned, of type client. This means that a request failed. The SOAP Fault Actor is set

to the ID, and the detail contains the exception.
• A SOAP Fault is returned of the type Server. This means that the instance failed. The detail contains the

exception.
Typically, your client would implement a collector thread that continually polls the collectAsync method to
gather output data as it becomes available.
GridServer Developer’s Guide 35
•
•
•
•
•
•

3

Web Services
Note: Most web service client generators handle multiple return values via a wrapper class (such as Axis)
or passing the additional argument by reference (such as C#.)

State Updates
Methods registered as state update calls are simply marked with the appropriate SOAPAction. When called,
they perform an update just as if from the API. State updates may only be done on non-default service
instances

Fault Handling
Any execution exception is handled by returning a standard SOAP fault.

• faultCode: If the Service implementation had an exception, the code will be Client. It will be Server
in any other case.

• faultString: The exception message and stack trace.
If the Web Service throws an exception on an asynchronous Service, the fault will be returned on the
collection request.

Authentication
Authentication is performed if Driver Authentication is enabled on the Director. To enable Driver
Authentication, see “Enabling Client Authentication” on page 70 of the GridServer Administration Guide.
Basic HTTP Authentication can be used, which is supported by most SOAP clients, such as the .NET
SoapHttpClientProtocol class, and Apache Axis client.

Here are the steps to deploy a Web Service for a SOAP client using Driver authentication.

Java with Axis:

1. Deploy the Web Service.
2. Generate the Java Proxy classes as follows:

java org.apache.axis.wsdl.WSDL2Java
http://example.com:8000/livecluster/services/JavaDealValuatorExample?wsdl

3.) Create an instance of the proxy as follows:
JavaDealValuatorProxy proxy = (new
JavaDealValuatorServiceLocator()).getJavaDealValuatorProxy();

((org.apache.axis.client.Stub)proxy).setMaintainSession(true); // maintain session

4.) When using Driver Authentication, do the following:
((org.apache.axis.client.Stub)proxy).setUsername("your username");

((org.apache.axis.client.Stub)proxy).setPassword("your password");

.NET:

1. Deploy the Web Service.
2. Using a .NET cmd shell, do the following:

wsdl.exe http://example.com:8000/livecluster/services/JavaDealValuatorExample?wsdl

3. Create an instance of the proxy as follows:
using System;
6 Chapter 4 – Accessing Services
•
•
•
•
•
•

This Document is Proprietary and Confidental

using System.Net;

using System.Web.Services.Protocols;

JavaDealValuatorService proxy = new JavaDealValuatorService();

proxy.CookieContainer = new System.Net.CookieContainer // maintain state

4. When using Driver Authentication, do the following:
proxy.credentials = new NetworkCredential("your username", "your password");

Proxy Generation and Services as a Web Service Binding
Proxy Generation is the automatic generation of a client proxy class that mirrors the registered Service type.
This proxy generation mimics the WSDL proxy generation of a Web Service; the difference is that the proxy
makes its calls via a Service object on a Driver rather than using SOAP over HTTP.

Essentially, the Service can be thought of as a binding to a virtualized Web Service that can process
asynchronous requests in parallel. Additionally, because the proxy does not expose any DataSynapse
classes, it provides a standards-compliant approach to integrating applications in a vendor non-specific way.

The following rules apply to the generated proxy:

• The use of the proxy class is completely independent of the DataSynapse API. That is, client code that
uses the proxy class does not need to import or reference any DataSynapse classes.

• If there is an initMethod, the proxy constructor takes any arguments to that method.
• All service methods produce synchronous and asynchronous versions of the method on the proxy.
• Each update method has a corresponding update method on the proxy.
• Since the cancelMethod and destroyMethod are called implicitly, they do not generate methods on the

proxy.
• The targetPackage field indicates the package (in Java) or namespace (in .NET) in which the generated

classes are placed. If not set, it is the name of the Service.
• If xmlSerialization is used, classes are generated for all non-primitive types, which must be interop types.

If not, they can be any serializable type, they are not generated, and the client must have access to those
same classes (via a JAR/Assembly.)

• When generating proxies, a Java Calendar object will be represented by a DateTime object in a .NET
proxy, and vice-versa.

The proxy is generated using the Service Type Registry page. The proxy is generated on an Engine, so an
idle Engine must be available for the generation to succeed.

Java Proxy Example
The following is an example of methods from a Java generated proxy:

Example 4.1: Java Generated Proxy Example
public class JavaDealValuatorProxy extends ServiceBindingStub {

public JavaDealValuatorProxy(examples.dealvaluator.client.java.MarketData data) throws
Exception {...}
GridServer Developer’s Guide 37
•
•
•
•
•
•

3

Service Options
.NET Proxy Example
The following is an example of a .NET proxy.

Service Options
Each Service is equipped with a Options object, which contains various configuration parameters and
settings. For example, some commonly used options include PRIORITY and GRID_LIBRARY. A complete list of
all options available for the Options object is available in the API reference documentation.

Service Options can be set in two ways: in the Service Type Registry, or when creating the Service
Session with the client. If an option is set in the registry, it cannot be overridden by the client. If it is
left as [not set] in the registry, and it is not set by the client, the default value is used.

Service Session Context
The ServiceSessionContext is a convenience class for accessing information about an invocation, such as
the session and task IDs, while it is running on an Engine. This is an alternative to using, for example, the
system properties when running a Java Service. Using this class allows for immediate updating of invocation
information; setting the INVOCATION_INFO system property only updates at the end of the invocation.

The ServiceSessionContext object can be reused; the method calls will always apply to the currently
executing Service Session and invocation. All method calls should be made by a service, update, or init
method; if not, it may throw an IllegalStateException or return invalid data. For instance, if a Service
method spawns another thread which uses this class, the context is only valid until the Service method
returns.

Shared Services
A Shared Service is an instance of a Service that is shared by Clients executing on different processes or
machines. When a Service is Shared, it means that the state of the Service is maintained across the Client
boundary. A Globally Shared Service Instance is a shared Service that can have only one instance for the
Manager.

 public void destroy() {
 super.destroy();
 }
}

Example 4.2: .NET Generated Proxy Example
namespace examples.dealvaluator.client.net {
public NETDealValuatorProxy(MarketData data) : base("NETDealValuatorExample",
new object[] {data}, null, null, true) {}
...

new public void Destroy() {
 base.Destroy();

}
}

Example 4.1: Java Generated Proxy Example (Continued)
8 Chapter 4 – Accessing Services
•
•
•
•
•
•

This Document is Proprietary and Confidental

A Shared Service is created when a Service is created with the SHARED_SERVICE_NAME option specified. Any
client of the same type attempting to create a Service with the same name and the same Shared Service name
will attach to the already created Service. All clients sharing the shared instance will share the same Service
ID. Clients must be of the same type to share Services (for example, a Java Driver cannot share a Service
created with CPPDriver.) You cannot use any init data when you create a Shared Service.

When the client cancels the Service instance, it only cancels the tasks submitted by that client. The Service
can only be cancelled by the admin page or Web Service Admin interface. The Shared Service becomes
inactive when the last client detaches from the Service. The Service will be closed if the
SHARED_SERVICE_INACTIVITY_KEEP_ALIVE_TIME is 0 or not set. Otherwise, it waits that amount of time before
closing. Also, note that when using Shared Services, Engine state is not maintained in failover, unless all
Drivers that updated state are still running the instance.

Service Groups
Service Sessions can be collected together in a group to aid in administrative tasks. A convenience class
called ServiceGroup is provided in the API, which allows you to create a Service Group and later create new
Service Sessions within the Service Group. Each new Service Session created within a Service Group will
be automatically assigned Description.SERVICE_GROUP_ID, a generated random unique ID for that group.

In the GridServer Administration Tool, you can view and maintain Service Groups in the Service Group
Admin page on the Services tab. The Service Group Admin page enables you to take actions on an entire
group of Services at once, similar to the way you can act on Services on the Service Admin Page. For
example, you could cancel a Service Group, which would cancel all of the Service Sessions within that
Service Group.

Data References
Data References are a convenient programming interface for passing lightweight references to data across
the network. A Grid client or service can create Data References, pass them over the network, but leave the
data where the original Data Reference was created. If any Grid client or Grid node actually needs the data,
it can de-reference the object and the data will automatically be downloaded from the original source.

This abstraction can be used for generalizing Grid workflows. A Grid client can receive the results of a
particular service as a reference, and then send another request to the Grid with that reference. The
GridServer Engine that services the request will de-reference the data object, loading it from the original
Grid node that produced the data. This is equivalent to passing pointers across the network.

A DataReference is an Object that can be passed interoperably if it is used as an argument, return type, or a
GridCache object. Note that it must be the actual object passed to work interoperably; it can’t be part of
another object.

A DataReference is created using a DataReferenceFactory. Data References cannot be created with a null
source. The fetch methods are use to retrieve the actual data. The data is not cached after a fetch, that
is, any time a fetch is performed, the data is retrieved. If the reference has expired, a FileNotFound
exception is thrown on a fetch If the client is down, a Connect exception is thrown, although in some
cases connections can be refused due to other reasons, such as socket backlog limitations.
GridServer Developer’s Guide 39
•
•
•
•
•
•

4

Service Collection
C++ Data References
Because there is no inherent serialization support in C++, additional functionality is provided to convert a
Data Reference to a byte[] (and the reverse) so that it may be sent to another client and used by that client.

Also, because reflection is not available in C++, object Data References are not available via the C++ API.

Service Collection
By default, the Driver Service Instance will immediately collect results as soon as they are available. In some
cases, you may need to either never collect the results, or collect them at a later time. Values used with
COLLECTION_TYPE include IMMEDIATELY, LATER, and NEVER.Values used with COLLECTION_TYPE are as follows:
IMMEDIATELY Task outputs are collected as soon as they are ready.

LATER Task outputs are not collected in this Service, another Service will collect them later. See “Deferred
Collection”, below, for more information. This is not available from a Service proxy.

NEVER Task outputs will not be collected. This may be used, for example, in the case where a Service may
write data directly to a database. This is not available from a Service proxy.

The LATER and NEVER collection modes are not for long running services. They should be used only for
batch submissions that finish quickly. If used for Services with indefinite duration, there will be no way
to clean up the inputs.

Deferred Collection
The LATER mode indicates that the client can submit and update data to the Service Session. It will not collect
the results, however, as another instance will attach to the Service Session to collect the results. None of the
results are removed from the Service Session until it is destroyed by the collector. The LATER mode cannot
be used from a Service proxy.

There are two reasons then to use this method:

1. To speed the submission of requests to a Service Session so that Engines can start working as soon
as possible. This is because the collection of data does not start until submission is complete.

2. To recover from a failure in the application that embeds the Driver. Since results are not removed
until the Session is destroyed, if the application undergoes a failure it can recollect the results when
it restarts.

Deferred collection Services require that the submitting Driver to call destroy on the Service to indicate that
submission is complete. If you are using the submitting Driver in such a way that it exits after submitting
the tasks and calling destroy, keep in mind that you should not call System.exit or exit from the
ServiceLifecycleHandler, as the destroy message will never get to the Broker. Also note that if you are
exiting the submitting Driver immediately, you must set DirectDataTransfer to false in the
driver.properties file

After creating a Service with deferred collection, ServiceFactory.getService() can be used to retrieve
results. When all results have been collected, call destroy to indicate to the Broker the instance has collected
all outputs and the Session should be destroyed. Multiple collectors can be created, but keep in mind that if
a collector calls destroy(), the Service will be destroyed and no other collectors will be able to finish
collecting outputs.
0 Chapter 4 – Accessing Services
•
•
•
•
•
•

This Document is Proprietary and Confidental

The following is an example of how to use the LATER mode with recovery:

Example 4.3: Deferred Service Collection
//
 // Creates a new Session and submits requests to the Session
 // @param serviceType The type
 // @param methods The list of methods
 // @param args The list of arguments
 // @return The id of the Session
 // @throws Exception on error.
 //

 private String submitService(String serviceType, String methods[],
Object[][] args) throws Exception {

// create the session as a Collection.LATER type
 Properties props = new Properties();
 props.setProperty(Options.COLLECTION_TYPE, Options.Collection.LATER);
 Service cs = ServiceFactory.getInstance().createService(serviceType, null,
props, null);

// Submit all requests.
 // Note that the handler must be null because this Instance cannot collect.
 for (int i = 0; i < args.length; i++) {
 cs.submit(methods[i], args[i], null);
 }
 String id = cs.getId();

 // destroy to indicate that submission is complete, and to free local resources
 cs.destroy();

 // now save this ID to a file, for recovery purposes
 saveServiceForRecovery(id);
 return id;
 }
//
 // Starts collection of results from a Collection.LATER Session
 // @param id The id of the session
 // @param handler The invocation handler
 // @throws Exception on error.
 //

 private void collectService(final String id, ServiceInvocationHandler handler)
throws Exception {
 // create a handler that removes this service id from the list in the file
when it is finished
 ServiceLifecycleHandler slc = new ServiceLifecycleHandler() {
 public void destroyed() {
 removeServiceFromRecovery(id);
 }
 public void destroyed(ServiceException e) {
 removeServiceFromRecovery(id);
 }
 };
GridServer Developer’s Guide 41
•
•
•
•
•
•

4

Service Collection
No Collection Service
The API allows a NEVER collection mode, which allows a Service to submit tasks and not collect them. Such
a Service may, for example, write results to a database. Services created with NEVER collection can only
submit and update. Calls to execute throw an Exception. This collection mode is not available when using
a Service proxy.

A NEVER collection Service is created by setting the CollectionType option to NEVER.

Calling destroy will release resources locally on the Driver, and indicate that the Instance is finished with
submission. If the Driver is shut down and times out, the session will be considered to be done submitting,
as if the Driver had called destroy. When the session is finished submitting due to one of the two prior
actions, and all tasks have completed/failed, the session is automatically closed.

 // get an instance of the session, which starts collecting results
 Service cs = ServiceFactory.getInstance().getService(id, handler, slc);

 // set the service to be destroyed when it finishes collecting all output
 cs.destroyWhenInactive();
 }

 //
 // Runs a service by first creating a Collection.LATER Session, submitting
all requests,
 // then getting the collection instance to collect the results.
 // @param serviceType The type
 // @param methods The list of methods
 // @param args The list of arguments
 // @param handler The invocation handler
 // @throws Exception on error.

 //
 private void runService(String serviceType, String methods[], Object[][] args,
ServiceInvocationHandler handler) throws Exception{
 String id = submitService(serviceType, methods, args);
 collectService(id, handler);
 }

//
 // Recovers from an application failure by starting collection of Sessions that
 // did not complete collection prior to failure
 // @param handler The invocation handler
 // @throws Exception on error.
 //
 private void recoverAll(ServiceInvocationHandler handler) throws Exception {
 String[] recovered = getAllRecoveryServices();
 for (int i = 0; i < recovered.length; i++) {
 collectService(recovered[i], handler);
 }
 }

Example 4.3: Deferred Service Collection (Continued)
2 Chapter 4 – Accessing Services
•
•
•
•
•
•

This Document is Proprietary and Confidental

Engine Pinning
Engine Pinning enables a Service Session to specify that once an Engine has worked on a Service Session,
it will not work on any other Service Sessions as long as that session is in progress. This enables you to
quickly replicate 1-to-1 architectures, or if for legacy reasons or lack of availability to source code to
maintain massive amounts of expensive-to-replay state on an Engine.

Engine Pinning is typically used in conjunction with Max Engines to limit one or a set of Engines to work
solely on a Service.

This feature is available for any type of Service. It is exposed as a two Engine-side methods, pinToService()
and unpinFromService(). If an Engine calls pinToService() while working on a task for a Service, it will be
marked as pinned to the session when it completes the task, regardless of whether the task was successful.
From this point, the Engine will only take tasks from this Service. Once the session is finished, or when then
Engine calls unpinFromService(), the Engine is no longer pinned and can work on other Services.

Engines that are pinned will be unpinned automatically in the following circumstances: if the Broker loses
its connection with the Engine for any reason (such as loss of heartbeat), if the Engine process terminates
for any reason, if an Engine performs a soft logoff due to Engine Sharing, if a task fails due to an error in
DataSynapse code (such as reading input), or if the session is destroyed.

Exceptions issued by user code that result in task failure do not cause an Engine to be unpinned, unless the
exception specifies Engine restart, in which case the above requirement applies.

Other pin/unpin strategies—for instance, unpinning after a certain amount of idle time, or when the Broker
queue is empty—can be implemented as a separate Engine thread that polls for a given condition and unpins
as necessary.
GridServer Developer’s Guide 43
•
•
•
•
•
•

4

Engine Pinning
4 Chapter 4 – Accessing Services
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 5

• • • • • •
 The Tasklet API

Introduction
The Tasklet API is available in both C++, using the CPPDriver, and in Java, using the JDriver. It is suitable
for use when your application code on the Driver and the Engine side is written both in Java or both in C++.
It is the forerunner to the more loosely-coupled Service model.

Note: This material is also covered with code samples in the GridServer Object-Oriented Integration
Tutorial. This chapter is designed for readers who want a conceptual reference to the API.

The Tasklet API
The Tasklet API consists of four types of objects: Tasklet, TaskInput, TaskOutput, and Job.

A Tasklet is the object that is created on the Engine side. It packages the computation’s common data and
behavior needed to run one unit of work in the overall problem being distributed. Like a Servlet, a Tasklet
contains a method for doing the work, as well as other methods for lifecycle management. A Tasklet takes
a TaskInput as input, operates on it, and produces a TaskOutput as output. A TaskInput packages the data
and code that is unique to one work unit in the overall computation, and the TaskOutput packages the results
of an individual unit of work. Although it is helpful to think of a task as a combination of a Tasklet and one
TaskInput producing one TaskOutput, there is no Task object in the Tasklet API.

A Job object, represents the overall group of work being computed. The Job is the coordinator of the
individual work units or tasks. Using a Job object, your application creates a Job specific Tasklet, submits
TaskInputs, and processes the TaskOutputs as they arrive. The Tasklet API code provides access to the
GridServer Driver code compiled with and running within your application. The Driver collaborates with
the GridServer Manager to schedule and manage Jobs, distribute tasks, and provide the execution
environment that guarantees GridServer fault tolerance.

TaskInput and TaskOutput
TaskInput and TaskOutput are marker interfaces and contain no methods. Their purpose is to provide type
safety for objects as valid GridServer Tasklet API objects and ensure that the objects can be serialized for
transmission across the network as part of the distributed calculation managed by GridServer.

In Java, TaskInput and TaskOutput extend java.io.Serializable.

In C++, TaskInput and TaskOutput extend the incorporated class Serializable. Since object serialization
is not a built-in feature of the C++ language, this class provides the mechanism by which the C++
application code and the GridServer middleware exchange object data. It contains two pure virtual methods,
read and write, that must be implemented in any class that derives from it.
GridServer Developer’s Guide 45
•
•
•
•
•
•

4

Tasklet
Tasklet
The most important Tasklet method is service. It implements the computation that is to be performed in
parallel. The service method takes a TaskInput as argument and returns a TaskOutput.

Like TaskInput and TaskOutput, the Java Tasklet class extends java.io.Serializable. This means that the
Tasklet objects may contain one-time initialization data, which need only be transferred to each Engine
once to support any Task from the same Job. (The relationship between Tasklets and TaskInput/TaskOutput
pairs is one-to-many.) In particular, for maximum efficiency, shared input data should be placed in the
Tasklet, and only data that varies across invocations should be placed in the TaskInputs. Tasklet data can
be changed while the job is running via the update method.

Job
The Job object specifies methods that are implemented by the client application and are called by the
GridServer Driver in order to coordinate Job execution. These callbacks to notify the client application code
when tasks complete, when the Job is completed, or when errors occur. A Job has a single Tasklet, and
vice versa. In addition, the Job defines static methods for instantiating Job objects based on XML
configuration scripts.

The Job should:

• Specify which Tasklet is associated with the Job, by calling the setTasklet method,
• Provide the TaskInputs for the Job, by calling the addTaskInput method from within the

createTaskInputs method
• Start the Job, by calling execute or start, and
• Process TaskOutput results in the taskCompleted method.
In addition, for C++ implementations, the Job must specify the library that contains the Tasklet
implementation to be shipped to the remote Engines with a method called getLibraryName.

Both the C++ and Java versions of the API provide blocking (execute) and non-blocking (start) Job
execution methods.

When you write a Job class, you should minimally write the following methods:

• A constructor that can accept parameters for the Job.
• A createTaskInputs method to create all of the TaskInput objects. Call the addTaskInput method on each

TaskInput you create to add it to the Job. Each TaskInput you add results in one task.
• A taskCompleted method. It will be called for each TaskOutput that is produced. The method is passed a

taskId to aid in correlating results with tasks, since they may arrive out of order. taskIds are assigned
by, and returned from, calls to addTaskInput.

JobOptions
Each Job is equipped with a JobOptions object, which contains various parameter settings. For example,
some commonly used options include PRIORITY and GRID_LIBRARY. A complete list of all options available
for the JobOptions object is available in the API reference documentation.
6 Chapter 5 – The Tasklet API
•
•
•
•
•
•

This Document is Proprietary and Confidental

Job and Service Comparison
The following table compares Job terms and concepts with the Services model.

Summary
• The Tasklet API consists of four types of objects: Tasklet,TaskInput, TaskOutput, and Job.
• A Tasklet’s service method implements the computation that is to be performed in parallel. The service

method takes a TaskInput as argument and returns a TaskOutput.
• A Job object manages a single Tasklet and a set of TaskInputs. It is responsible for providing the

TaskInputs, starting the Job and processing the TaskOutputs.

Service Job

End-to-end work
session

Service Session Job

Atomic unit of work Service Request
Service Response

TaskInput
TaskOutput

Implementation Service Implementation Tasklet

Collection Collected immediately. Can also be collected
later or never.

Collected after submission. Can also
be collected immediately, later, or
never.

The synchronization in submit/collect is per Job or Service.
GridServer Developer’s Guide 47
•
•
•
•
•
•

4

Summary
8 Chapter 5 – The Tasklet API
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 6

• • • • • •
 PDriver

PDriver, or the Parametric Job Driver, is a Driver that can execute command-line programs as a parallel
processing service using the GridServer environment. This enables you to take a single program, run it on
several Engines, and return the results to a central location, without writing a program in Java, C++, or .NET.

PDriver achieves parallelism by running the same program on Engines several times with different
parameters. A script is used to define how these parameters change. For example, a distributed search
mechanism using the grep command could conduct a brute-force search of a network-attached file system,
with each task in the Service being given a different directory or piece of the file system to search. Scripts
could iteratively change the value of variables that are passed to successive tasks as parameters, step through
a range of numbers and use each value as a parameter for each task that is created, or define variables
containing lists of parameters.

PDriver uses its scripting language, called PDS, to define jobs. These scripts can also be used to set options
for a PDriver Service, such as remote logging and exit code checking.

Installing PDriver
PDriver is included with the GridServer SDK. For more information on installation, see Chapter 6, “Driver
Installation” on page 41 of the GridServer Installation Guide.

To use PDriver with SSL, you must configure your Manager to use SSL for all connections. To do this, see
Chapter 9, “Configuring Security” on page 72 of the GridServer Administrator’s Guide.

Resource Deployment
If you plan to run any custom executables using PDriver, they should be deployed to Engines using
GridServer’s application resource deployment feature, which is described in Chapter 7, “Application
Resource Deployment” on page 43 of the GridServer Administration Guide. Specifically, resources should
be deployed in the deploy/resources/<platform>/lib directory, or in another directory that will be referenced
by the execute command.

PDriver Commands
The following commands are used to run, batch, and cancel PDriver jobs on Unix and Windows systems.

Command Description
pdriver Starts PDriver, and runs a PDS script.

bsub Starts a one-time Service batch submission.

bcoll Collect a batch jobs on a one-time basis.

bstatus Lists status on pending batch jobs.
GridServer Developer’s Guide 49
•
•
•
•
•
•

5

PDriver Commands
Before running PDriver for the first time in a shell, you must first set its environment.To set PDriver’s
environment, either run the setenv.bat or source the setenv.sh file (enter source setenv.sh from the shell
prompt), which is located in the pdriver directory of the GridServer SDK.

The pdriver Command
PDriver is started with the pdriver command:

pdriver [-bsub | -bcoll <batchid> | -parallel] [-RA] [-noprompt] [-user driverusername] [-pass
driveruserpassword] [-domain <windowsdomain>] <script>

bsub and bcoll stand for batch submission and collection modes. This is useful for submitting long-running
Services without tying up the Driver. Submitting a Service in bsub mode creates a Batch Execution with a
Batch ID that can be used to run the Service unattended and collect the outputs later. The Batch Executions
created are of the same type as those used from the Batch scheduling facility; see Chapter 8, “The Batch
Scheduling Facility” on page 61 of the GridServer Administration Guide for more information on Batches.
This style of batch submission/collection should be used when there are multiple tasks and or prejob/postjob
tasks that need to be run and are defined in the PDS script.

RA indicates that the job will be run as the current desktop user, with the current Windows domain. PDriver
will prompt for a password. noprompt turns off the password prompt; this is only useful when Service RA
auth is disabled on the Broker. domain is Unix only; it allows specification of a win32 domain for Windows
Engines to use when authenticating. user and pass are Windows-only, and enable you to pass a Driver user
and password (as defined in the GridServer Administration Tool) to PDriver.

The parallel flag is used to run multiple job blocks in a single PDS script in parallel.

The bsub Command
You can also run a one-time Service batch submission with the bsub command:

bsub [-name <name>] [-priority <val>] [-disc <setting>] [-mail <address>] [-stdin
<file>] [-stdout <file>] [-stderr <file>] [-nfs] [-RA] [-domain windowsdomain] [-
noprompt] <app> [args...]

This will submit a single Service, defined by <app> [args...], to be scheduled and run on the Grid. The
arguments are:

bcancel Cancels a pending batch job.

Argument Description
name Name of the Service.

priority Priority of the Service. Allowed values are 1-10.

Command Description
0 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

When the Service is submitted, a batch ID is reported to the console. This ID is to be used when collecting
outputs (when using the staging directory for input/output rather than NFS mounts.)

The bcoll Command
To collect batch jobs on a one-time basis, use the bcoll command:

bcoll <batchid>

This is a convenience utility for retrieving the <jobname>.out and <jobname>.err files generated by bsub with
nfs mode off. The argument is the batch ID indicated when bsub is finished submitting.

disc Indicates a <name><comparator><value> discriminator expression that must be satisfied
for a node to be assigned a Service or task. For example, valid settings include os==win32
or cpuNo>=4. This switch may be used multiple times. Parameters containing a greater-
than or less-than symbol must be enclosed in quotes.

mail Email address to send a confirmation message to when the Service is completed.

stdin File to be used as input for the Service. This setting is variable based on the -nfs switch,
described below.

stdout File to be used as output when -nfs is enabled.

stderr File to be used as error output when -nfs is enabled.

nfs Indicates whether inputs/outputs are available on a shared file system or are to be staged
on the Manager. When enabled,
-stdin, -stdout, and -stderr function as absolute locators for these files. When not
enabled, -stdout and
-stderr are ignored, and files designated as <jobname>.out and <jobname>.err are placed
in the staging directory. When not enabled, -stdin refers to a file on the Driver file
system which is to be staged on the Manager and retrieved by the Engine performing the
Service.

RA Runs the job on Engines as the current desktop user with the current Windows
domain. PDriver will first prompt for a password.

domain Allows specification of a win32 domain for Windows Engines to use when
authenticating. This only applies when running PDriver from a Unix machine.

noprompt noprompt turns off the password prompt; this is only useful when Service RA auth is
disabled on the Broker.

<app> [args...] The application to be run, and any optional arguments. The application is a binary or
script that is located on the Engine, and is found in the Engine’s path, and args are any
arguments passed to the application.

Argument Description
GridServer Developer’s Guide 51
•
•
•
•
•
•

5

PDriver Commands
In order to check the status of a Batch Job, you must be running PDriver with a Driver user that has the
appropriate access level on the Manager. To do this, create a Driver user with “Manage” level access on the
Manager and set via DSUsername and DSPassword in the driver.properties file to this username.

The bstatus Command
To get status on batch jobs, use the bstatus command:

bstatus [-jobs] [-engines] [-stagedir <id>] [-canceljob <id>] [-batches]

bstatus accepts the following arguments:

The bstatus command will print its output interspersed with Manager log output on stderr. To view only the
bstatus output on a Unix system, you can redirect stderr to null, for example, with bstatus -jobs
2>/dev/null. Windows users can use the syntax bstatus -jobs 2>&0.

In order to check the status of a Batch Job, you must be running PDriver with a Driver user that has the
appropriate access level on the Manager. To do this, create a Driver user with “Manage” level access on the
Manager and set via DSUsername and DSPassword in the driver.properties file to this username.

The bcancel Command
To cancel a batch job pending on the Manager, use bcancel:

bcancel <batchid>

The argument is the batch ID returned by bsub or pdriver in bsub mode.

There is an important distinction between batch IDs and Service IDs. A batch ID refers to a Service that is
pending execution in the batch queue but has not been handed over to the scheduler. Once that Service is
scheduled, a Service with a separate Service ID is launched. The -canceljob switch in bstatus only works
for Service IDs. To remove a pending batch job, bcancel must be used. This is unavoidable, since running
Services and pending batch jobs are separate entities and are tracked differently. Likewise, to perform output

Argument Description
jobs Lists all jobs on the Manager. This does not include pending batch jobs. The output

displays name, jobid, tasks, priority, and status for each job. If there are no jobs, only
the four rows of heading lines are returned.

engines Lists all Engines connected to the Manager. The output displays name, ID, os, and
status of each Engine. If there are no jobs, only the four rows of heading lines are
returned.

stagedir Lists all files living on the staging directory for the given job ID or batchjob ID.

canceljob Cancels a job. This only works for job IDs, not batch IDs, and the Driver must have
appropriate permissions for this operation.

batches Lists all Batch jobs on the Manager and their status. The output displays name, batchid,
and status of each Batch. If there are no batches, no output is returned.
2 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

collection and to see the contents of the staging directory, the batch ID must be used. This is due to the fact
that at batch submission, only the batch ID is known, since the Service ID is not generated until run-time.
Therefore the batch ID is used as a key for the staging directory.

About PDS Scripts
PDriver uses scripts written in the PDS syntax to define how a Service operates. Aside from defining what
programs are run during a Service, PDS scripts enable you to define what happens before and after a task or
Service. It also enables you to schedule Services to run in the future, add conditional structure to a Service,
and pass custom parameters to a Service or task.

The PDriver script (hereafter referred to as PDS) language allows for the expression of distributed
computations that are composed of executable programs. It is designed so that typical computations are easy
to describe, while providing for advanced features like conditional execution, iteration, scheduling and
discriminators.

This section is a reference for the PDS language. For sample PDriver scripts, see the examples/pdriver
directory of the GridServer SDK.

PDS Basics
A single PDS file typically corresponds to a single GridServer Service. The computation represented by the
Service is usually structured as follows:

1. Split up the input data into several pieces, one per task.
2. Run the tasks in parallel on the Engines.
3. Collect and combine the results.
If the data is too large to be passed as command-line arguments to the program running on the Engine, then
it should be placed into files. These files can be located in a shared directory, or they can be copied to the
Engine, and the result files copied back.

The PDS language contains constructs for carrying out various statements, such as running executables and
copying files, at each point in the lifetime of a Service.

A few words about the lexical structure of PDS: whitespace is not significant, but case is. All text from the
“#” character to the end of the line is a comment and is ignored.
GridServer Developer’s Guide 53
•
•
•
•
•
•

5

About PDS Scripts
PDS Structure
A PDS file begins with the keyword job (a
synonym for Service) and ends with the
keyword end. Supply a name after job to
identify the Service. Two types of elements
can occur in between job and end: parameter
declarations, which assign values to
variables, and blocks, which describe
features or statements of the Service. The
options, schedule and discriminator blocks
describe various facets of the Service, such
as when to run it and which Engines can
accept its tasks. The other five blocks
describe statements to be executed at
different phases of the Service. All blocks
are optional except for the task block.
Multiple job blocks may also be defined in a
single PDS file, and they will be run
sequentially by default. You can also run the
pdriver command with the -parallel flag to
run multiple jobs in one PDS file in parallel.

The table below details the structure of a
PDS file:

Example 6.1: PDS Structure
job <jobname>
options

onerror (fail | retry | ignore)
maxFailedTaskRetries = <val> (default: 3)
mpiEnabled = <true|false>
mpiGroupsize = <val> (default: 0)
enableBlacklisting = <true|false>
jobPriority = <0-10> (default: 5)
autoCancelMode = "always" | "never" | "libloadfailure"

jobOption "<key>" "<val>"
jobDescription "<key>" "<val>"

end

<variable assignment>

schedule
<properties>
[email = "address"]

end

discriminator
[affects

<properties>
 end]
<properties>

end

FIGURE 6-1: The structure of a PDS file.
4 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

The Depends Statement
Multiple job blocks can be included in a single translation unit (a PDS file and any included PDS files), and
by default, they will run sequentially. It is also possible to define jobs that run based on the completion or
failure of other jobs using the depends statement within a job block. For example, the job containing the
following code will run if firstjob succeeds, if secondjob fails, and following thirdjob in either case:

depends
firstjob succeeds
secondjob fails
thirdjob succeeds or fails

end

The Include Statement
You can include another PDS script within a PDS script by using the include statement. For example:

include "filename"

This includes a PDS script contained within filename. The filename can be declared with any string type.
The filename is relative to the working directory from which you run PDriver, and can contain a relative or
absolute path to a PDS file. The PDS file should contain a full job, and can only be used outside the top-
level job block. For example, a single PDS file could contain three include statements, each one including
a job block stored in another file.

Lifecycle Blocks
The five blocks that describe statements to be executed during the life of the Service are discussed below.

prejob
<statements>

end

pretask
<statements>

end

task <taskcount>
<statements>

end

posttask
<statements>

end

postjob
<statements>

end

end

Example 6.1: PDS Structure (Continued)
GridServer Developer’s Guide 55
•
•
•
•
•
•

5

About PDS Scripts
prejob
Executes once at the very beginning of the job before any tasks are submitted to the Manager. These
commands are executed on the Driver.

pretask
Executes once on every Engine that will be processing tasks for the job, before any tasks are processed. This
is intended for generic initialization, such as obtaining input files common to all tasks.

task
Commands in this block are executed once per task. The number of tasks in the Service is determined by the
expression following the task keyword. Array variables referenced in the task block are indexed by the task
ID, as explained in more detail in the Arrays section, below.

Since the same Engine can take more than one task, the statements in the task block may run many times on
the same Engine. The statements in the pretask and posttask blocks will run only once per Engine.

The task block is the only required block in a PDS file. Thus a computation that only required executing a
program ten times could be expressed by the PDS program:

job simple
task 10

execute "myprog"
end

end

posttask
Executes once on every Engine at some point after the job has completed. Engine cleanup tasks should go
here. Please note however that all files in the DSWORKDIR directory will be automatically cleaned by the
Engine’s file cleaner. The posttask block typically executes after the postjob block executes on the Driver
side, although it is not guaranteed to execute then. Execution order of the blocks in a PDS file is typically
prejob, pretask, task, postjob, and posttask, but this is not guaranteed.

postjob
Executes once on the Driver once all tasks have been completed. Typically used for obtaining outputs from
the staging directory, running post-processing scripts, and so on.

Other blocks include:

The Options Block
This block is used to set Service options and description information.
6 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

Several directives are used for features specific to PDriver jobs:

Standard options (which are described in the C++ API reference documentation for the JobOptions object)
are set with the jobOption directive:

jobOption "engineBlacklisting" "true"
jobOption "priority" "8"

Elements of the job description are similarly set with the jobDescription directive:

jobDescription "serviceName" "Distributed Grep"

Each argument to jobOption or jobDescription must be a string or an expression that evaluates to a string;
literal numbers are not allowed.

The following jobOption directives are common to both PDriver and CPPDriver:

Keyword Argument Description
onerror ignore, retry or fail Determines the default setting for error-handling. See

“Builtin Commands” below for details.

maxFailedTaskRetries A numeric expression The number of times a failed task will be resubmitted.

autoCancelMode never, always or
libloadfailure

Controls whether the entire job is cancelled when a single
task fails. libloadfailure, which is the default, means
that the job will be cancelled if the task failed due to the
inability to load a library on the Engine side. Note: this is
a standard option and thus can be set with jobOption, but
the autoCancelMode directive supports mnemonic strings
as arguments rather than numbers.

mpiEnabled An expression
evaluating to true or
false

See “MPI Jobs” below. The default value is False.

mpiGroupSize A numeric expression See “MPI Jobs” below.

enableBlacklisting An expression
evaluating to true or
false

This is the same as engineBlacklisting for other
Services or Jobs. The default value is false.

Keyword Argument Description
email string An email address which is notified when a Service is

completed.

priority integer from 0 - 10 The priority of this Service. The default value is 5.
GridServer Developer’s Guide 57
•
•
•
•
•
•

5

About PDS Scripts
taskMaxTime integer If a running task exceeds this amount of time in seconds,
the task will be rescheduled or retried, based on the
setting of rescheduleOnTimeout. The task will be
rescheduled or retried when the rescheduler checks for
expired tasks after each poll period. This poll period is 60
seconds by default, and can be set on the Manager
Configuration page, in the Services section, under the
Service Rescheduler heading, with the Poll Period
property. The default value of taskMaxTime is infinite.

autoCancel 0, 1, or 2 Whether the Service is automatically cancelled on a task
failure. Possible values include 0 (AUTO_CANCEL_NEVER), 1
(AUTO_CANCEL_LIBRARY_LOAD), or 2
(AUTO_CANCEL_ALWAYS). The default value is 1
(AUTO_CANCEL_LIBRARY_LOAD).

compressData true or false Whether the tasklet, input, and output data should be
compressed. For data sizes greater than10K per input or
output, compression time is minimal and is
recommended. The default is false.

killCancelledTasks true or false Whether an Engine will be killed and restarted if a task is
cancelled. Tasks are cancelled when cancelled in the
Administration Tool, when a Service is cancelled, and
when another Engine completes the task due to redundant
rescheduling. If this value is false, the cancelled method
will be called rather than killing the Engine, to provide
user-defined interruption of the task and any necessary
cleanup. The default value is true.

tasksPerMessage integer The maximum amount of tasks per submission/retrieval
message. The messages will not exceed 100 KB,
regardless of this number. The default is 100.

autoPackNum integer The number of tasks per auto-packed tasklet. In this
mode, a tasklet will process multiple task inputs in one
Service routine by packing task inputs into a single task,
and calling your Service routine on all inputs. This mode
should be used if there will be many more inputs than
Engines, or tasks are of short duration, to maximize
efficient use of memory and Engine processing power.

Keyword Argument Description
8 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

If inputs are added outside of createTaskInputs, the
service will check every second if there are any
outstanding tasks that have not yet been submitted and
submit them in a package even if there are less than the
amount requested, to ensure that all tasks are submitted.

Task IDs in the Administration Tool will be the IDs of the
task packages, so they will not directly correspond to the
task ID from the Driver and Engine’s point of view.

TaskletException auto-resubmission and task-level
discrimination are not supported for this mode, and will
be ignored. Also, this mode is not supported for
StreamJobs, and will be ignored if set.

The default value is 0.

autoPackMode 0 or 1 If 0 (AUTOPACK_SERIAL), all tasks will be executed serially.
If any service method throws an exception that requires
an Engine restart, the remaining tasks will fail with a
TaskletException and not be serviced.

If 1 (AUTOPACK_PARALLEL), all tasks will be executed in
parallel in separate threads. If any Service method throws
an exception that requires an Engine restart, all other
threads will be interrupted. It is the responsibility of the
tasklet implementation to immediately fail by throwing a
TaskletException if interrupted.

The default value is AUTOPACK_SERIAL.

sharedUnixDir string A directory in which the Driver and Unix Engines will
exchange data. This directory must be an NFS mounted
directory to which all Unix Engines working on this job
have read/write access. This will override use of the
fileservers on the Driver and Engines, and is optimally a
directory local to this Driver for minimum network
bandwidth.

If set and using Windows Engines, the Windows share
directory must also be set to the equivalent of this
directory.

Keyword Argument Description
GridServer Developer’s Guide 59
•
•
•
•
•
•

6

About PDS Scripts
sharedWinDir string A directory in which the Driver and Engines will
exchange data. This directory must be a Windows shared
directory to which all Windows Engines working on this
job have read/write access. This will override use of the
fileservers on the Driver and Engines, and is optimally a
directory local to this Driver for minimum network
bandwidth. Typically, the share will be Windows UNC
format, such as //server/data.

If set and using Unix Engines, the NFS share directory
must also be set to the equivalent of this directory.

checkpoint true or false Enables checkpointing for this Service. The default value
is false.

maxEngines integer The maximum number of Engines that can be working on
a task at a time. The default value is infinite.

statusExpires true or false Whether the status of the job in the Service
Administration page expires. If false, the status must be
manually removed. The default value is true.

engineBlacklisting true or false Whether Engines that fail at a task should be prevented
from taking other tasks from that Service. The default
value is false.

unloadNativeLibrary true or false Whether the native library should be unloaded once the
Service is finished. Set the value to false for sharing
global objects in the library. The default value is true.

deleteInvocationData 0, 1, 2, or 3 How Service invocation data is purged from display in
the Administration Tool. This should be set to 0
(INVOCATION_COMPLETED) on a Service that will be kept
open indefinitely, to avoid memory overhead. The default
value is 1 (INVOCATION_COMPLETED) for TaskDispatchers,
2 (SERVICE_COMPLETED) otherwise. It can also be set to 3
(MANUAL) so purging only takes place manually.

maxTaskRetries integer The maximum number of retries allowed for any task that
fails. A retry occurs if the task failed and
serviceFailRetry is true, or if the task exceed the
taskMaxTime and maxTaskReschedules is false. The
default value is 3.

maxTaskReschedules integer The maximum number of redundant reschedules allowed
for any task, if the any of the rescheduler strategies are in
effect on the Broker. The default value is 3.

Keyword Argument Description
0 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

JobDescriptions

All Services have a JobDescription object created upon instantiation, with default settings. Predefined
properties are stored in the database. Any other properties can be defined. The following JobDescriptions
are set by default:

rescheduleOnTimeout true or false How a task is dealt with if it exceeds the
taskMaxTime. If true, the request is rescheduled, and
the current one continues. If false, the Engine
running the task is killed, and the task is retried. The
default is false.

serviceFailRestart true or false Whether an Engine will restart itself on a Service
invocation failure. The default is false.

serviceFailRetry true or false Whether a Service request will be retried on a
failure. If true, it will only be retried up to the
maximum numbers of times, as set by
maxTaskRetries. The default is false.

allowedDriverProfiles string Comma-delimited list of allowed Driver Profiles
that may use this Service. All Drivers are allowed if
empty.

gridLibrary string A Grid Library that is used for this Service. The string
argument specifies the name of the Grid Library.

gridLibraryVersion string The version of the Grid Library that is used for this
Service. The string argument specifies the version of the
Grid Library.

Name Description
appName The application name.

appDescription The application description.

deptName A department name associated with the Service.

groupName A group name associated with the Service.

individualName An individual’s name associated with the Service.

serviceName The name of the Service. By default, this is set to the Service ID.

class The name of the class in the Service.

serviceType The type of service: Job, TaskDispatcher

Keyword Argument Description
GridServer Developer’s Guide 61
•
•
•
•
•
•

6

About PDS Scripts
The Discriminator Block
This block specifies either a job-level or task-level discriminator for the job. A discriminator without the
affects clause is considered a job-level discriminator. Only one job-level discriminator may be declared.
Use of the affects clause specifies conditions that must be met for the discriminator to be applied to a
particular task. Multiple discriminator blocks with affects clauses can be used.

Discriminator declarations consist of a property name, a comparator, and a value:

<param-name> ==|!=|<|>|<=|>= <param-value>

The property name refers to Engine properties. A predefined set of properties are assigned to all Engines by
default, and additional properties can be assigned to Engines by the administrator on the Engine Properties
page and Engine Property List page. To see a full list of properties for a given Engine, click the Engine
tab, click Engine Admin, and from the Actions list, click Engine Properties. Property names are case-
sensitive in PDS scripts. For example, the following would discriminate against Engines with a value of less
than 350 in the cpuMHz Engine property:

cpuMHz > 350

Use of the affects clause is as follows:
discriminator

affects

$DSTASKID #variable

< #comparator

10 #numeric or string

end

The variable can be any array type or builtin variable; $DSTASKID is the number of the current task, starting
with zero. The comparator and numeric or string match against the literal to determine if the discriminator
applies against this task. The example above will apply a discriminator to the first ten tasks in a job.

The Schedule Block
Parameters in this block only have an effect if the job is submitted asynchronously with bsub. Allowed
schedule declarations are:
relative

type = relative
minuteDelay = <val>

absolute

type = absolute
startTime = "mm/dd/yy hh:mm AM|PM"

With either type, declaring email="string" in the Schedule block will send an email to the address given in
the string when the job is complete.
2 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

Variables, Types and Expressions

Basics
PDS has two primitive types, string and floating-point number, with the usual notations. Variables need not
be declared and can take on values of different types over time. A variable is dereferenced by preceding its
name with a dollar sign. Values are converted to the appropriate type depending on context. For instance, a
string will be converted to a number when it appears in an arithmetic expression. The grammar forbids
certain combinations of expressions to catch common mistakes. Some examples:

a = 5.2
b = "2.5"
c = $a + $b # succeeds, value is 7.7
d = 5.2 + "2.5" # disallowed by the grammar

Scoping
Variables assigned outside of any block are global and visible to all blocks. A variable assigned within a
block is visible only within that block.

Inside a block, a variable can be assigned as global variable, which is visible within other related blocks,
with the following syntax:

global a = 5.2

The following table describes what blocks are related with respect to scope:

Note that assigning a variable with the same name as a previously defined global variable does not change
the value of the global variable. Instead it, creates a new local variable in the block that has local scope and
does not change the value of the global variable.

Variable Substitution
Variable references are expanded within quoted strings in all contexts. For example, after

a = "foo"
b = "$a fighters"

Global variable set in Effective in

outside of the lifecycle blocks all blocks

the prejob block all blocks

the pretask block pretask, task and posttask

the task block task and posttask

the posttask and postjob blocks that block
GridServer Developer’s Guide 63
•
•
•
•
•
•

6

Variables, Types and Expressions
the value of b is "foo fighters". Use curly braces to separate a variable name from adjacent non-whitespace
text:

b = "${a}bar" # b contains "foobar"

Inside of quotation marks, a quote can be represented by escaping it with another quotation mark. Also,
inside quotation marks, the dollar sign character can be represented by escaping it with another dollar sign.
For example:

a = """hello""" # a contains "hello"
b = "$$100" # b contains $100

The backquote can also be used to assign the output of a shell command to a variable. For example:

datetime = ‘date‘

Expressions
PDS supports the usual arithmetic operators (+, -, *, /) with standard precedence. All arithmetic operations
are carried out with double precision floating-point values.

PDS also supports the standard C-style comparison operators (==, !=, >, <, >=, <=). These operators perform
numeric comparison if both arguments are valid numbers; otherwise, they perform string comparison. They
evaluate to zero if the comparison is false and a non-zero value if it is true.

PDS does not support the relational operators and, or, and not.

Backquote expressions. A string enclosed in backquotes (‘such as this‘) has variable substitution
performed on it, and the result is evaluated in a subshell. The standard output of the command is collected,
newlines and linefeed characters are replaced by spaces, and trailing whitespace is removed. The result is
the value of the expression.

Arrays
Arrays are fundamental to achieving parametric parallelism in PDS, because an array variable is implicitly
indexed in the task block.

Construction. Arrays of primitive values can be constructed in several ways. A literal value is written thus:

a = [1, 2, 3, 4, 5]

Arrays can also be constructed by autorange expressions. The expression

begin n end m step k

constructs an array starting with n and proceeding in increments of k until m is reached. More precisely, it
constructs

[n, n+k, n+2k, ..., n+rk]

where r is the largest integer such that n+rk<= m.
4 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

The expression

begin n count c step k

constructs an array of c elements beginning with n and proceeding in increments of k, that is,

[n, n+k, n+2k, ..., n+(c-1)k].

For example,

begin 10 end 15 step 2

and

begin 10 count 3 step 2

both construct the array

[10, 12, 14].

The third way to construct an array is to use the split function, which divides a string into array elements
at whitespace. Quoted elements will keep embedded whitespace and strip the quotes upon placement into
the array. For example, on Unix machines:

split(‘ls‘)

returns an array of the files in the current directory.

Indexing. In most contexts, when a variable containing an array is referenced, the first element is returned.
However, in the task block, the element corresponding to the ID of the currently running task is returned. (If
the task ID exceeds the array size, the last element of the array is returned.) This feature makes it easy to
write the most common kinds of distributed computations. For example, we can set up an array of values
and run a command on each one in parallel with the following PDS script:

args = begin 100 end 200 step 5

task sizeof($args)
execute "doit $args"

end

The $args in the execute statement expands to 100 for the first task, 105 for the second, and so on.

Another exception to the first element being returned from an array is that inside a for loop, the variable
containing the array will return the value at the current iteration of the loop. This is redundant with the loop
variable. For example, in for i in $args log "$i" log "$arg" end, $i and $arg will both be the same every
time; the loop variable $i is only there for convenience.

Explicit array indexing is not supported: the only ways to obtain an array element other than the first are
implicit indexing in the task block, and the for statement. Even within those contexts, assignment to the
variable holding the array changes the entire variable value, not the current element.
GridServer Developer’s Guide 65
•
•
•
•
•
•

6

Variables, Types and Expressions
Other features. An array that includes both string and numeric values is legal. Arrays of arrays are not
allowed.

The number of elements in an array can be determined by the sizeof function, as shown in the argument to
the task block in the above example.

The for statement can be used to iterate over the elements of an array. See “The For and Foreach Statement”
on page 69, for more information.

Builtin Variables
In addition to user-defined parameters, there are several builtin variables. These are:

It is important to put any temporary files in the DSWORKDIR directory. If you put this elsewhere and a task is
interrupted, the files will stay on the computer and never be automatically removed.

Arguments to the PDriver command that follow the script file name may be referenced with the automatic
variables $1, $2, $3 ... These variables may also be referenced collectively as a string using the automatic
variable $*. To create an array of all command-line arguments, use split($*).

$? contains the execution status of the last execute command.

Variable Description
DSTASKID ID of the current task (meaningless if not in task block)

DSJOBID ID of the current job. If submitted using the bsub switch, this indicates the batch ID.

DSWORKDIR Engine-side variable indicating temporary directory for job files. This directory is
located in the Engine installation directory and is typically ./work/machinename-
i/tmp/session-ID, where machinename is the name of the Engine host; i is the
instance, starting with 0; and session-ID is the Service Session ID for the PDriver Job.

Note that the tmp directory is periodically deleted by the Engine. The Temp File
Time-to-Live (hours) setting in each Engine Configuration controls the frequency
with which the Engine cleans this directory.

DSENGINEHOME Engine-side variable indicating Engine home

DSSTAGEDIR Alias for the Manager staging directory. This may be used as a source or destination
directory for the copy command. Files in this directory will be automatically deleted
periodically.

DSOS OS of the current system (for example, “linux”, “solaris”, “win32”, “plinux”,
“zlinux”)

DSMPIGROUPLEADER Engine-side variable with value of “true” or “false” indicating whether the current
Engine and task are designated as the leader for the current MPI group step. The
group leader fetches the routing table from the Manager and executes mpirun.

DSGROUPID The current MPI group step. The number of group steps equals the number of tasks
divided by the groupsize.
6 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

Statements

Builtin Commands
The following are builtin, OS-independent commands that can be used inside any lifecycle block (with the
exception of onerror, throw, and mpifetch):

Command Description
mkdir "dir-name" Creates a directory.

copy "src-file" "dest-file" Copies a file. Typically, the prejob block is used to copy
input files from the Driver machine to the staging
directory on the Manager, which can be referenced as
$DSSTAGEDIR. In the task or pretask block, the input file is
copied from the staging directory to the Engine’s local
filesystem. Output files are copied in the reverse
direction.

rmdir "dir-name" Removes a directory. The directory must be empty.

delete "file" Deletes a file. The wildcard * is supported.

log "log-message" Writes a message to the Driver log (in prejob or postjob
lifecycle blocks) or the Engine log (in pretask, task, or
posttask lifecycle blocks.)

execute [stdin="stdin=file"]
[stdout="stdout-file"]
[stderr="stderr-file"]
"command-to-execute"

Executes a command on the local machine using the shell
specified with the shell command. A subshell is spawned
for the command, unless specified otherwise with the shell
command. The subshell has the path available on the Engine
(as set in the Library Path property of the Engine
Configuration) or Driver.

Before running custom executables, they should be
deployed to Engines using GridServer’s application
resource deployment feature. See “Resource
Deployment” on page 49 for more details.

shell "shell-type" Specifies the shell to be used for commands run by the
execute command. The default is /bin/bash for Linux,
/bin/sh for Solaris, and cmd.exe for Windows. This can be
set to none, whereupon no shell will be spawned.

env (variable) Returns the value of the specified environment variable. If
the variable is a string literal, it should be enclosed in quotes.
An empty string is returned for nonexistent variables
GridServer Developer’s Guide 67
•
•
•
•
•
•

6

Statements
Arguments to all statements except for onerror must be enclosed in quotes. Quoted arguments may contain
linebreaks only if they are escaped by backslashes.

The mkdir, copy, delete, and rmdir commands are not OS-dependent and pathnames will be automatically
translated to work on the appropriate platform. For example, mkdir "sample/log1" will create sample\log1 on
Windows systems.

The If Statement
The syntax of the basic if statement is

if expression comparisonOperator expression then
statements

end

PDS also supports elsif and else clauses. The if statement can be used inside a lifecycle block (prejob,
pretask, task, posttask, postjob), to conditionally execute statements. One typical use is to execute different
commands depending on the Engine’s operating system:

if $DSOS == "win32" then
cmd = "dir"

else
cmd = "ls"

end
execute "$cmd"

An if statement can also appear at the top level of a PDS script, to include or exclude global assignments or
entire blocks. An example is

if $1 == "alwaysCancel" then
options

autoCancelMode "always"

onerror <ignore|retry|fail> Indicates what will happen when an execute command
returns with a nonzero exit code. ignore will take no action;
retry will reschedule the task on another Engine; and fail
will return an exception back to the Driver. The default is
fail. When used with retry, onerror can only be used within
the job or task blocks.

mpifetch <timeout> <filename> Fetches a routing table from the Manager containing IP
addresses for all Engines in the current MPI group step. The
arguments are a fetch timeout and a destination filename for
the table. See “MPI Jobs” below for details. mpifetch can
only be used within the task block.

throw "message" Causes the task to fail, and throws an exception. The
message is displayed on the Driver and written into the
Driver log. This cannot be used in the posttask lifecycle
block.

Command Description
8 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

end
end

The if statement is not legal in the options, schedule, or discriminator blocks.

The For and Foreach Statement
Although explicit looping over an array is not often needed, it can be achieved with the for statement:

for variable in expression
statements

end

The expression must evaluate to an array. The variable takes on successive elements of the array on each
iteration of the loop. Assignment to the loop variable is legal, but will have an effect only for the remainder
of that iteration. It will not alter the array.

Inside a for loop, the variable containing the array will return the value at the current iteration of the loop.
This is redundant with the loop variable. For example, in for i in $args log "$i" log "$args" end, $i and
$args will both be equal for each iteration; the loop variable $i is only there for convenience.

The foreach statement allows you to implicitly index an array, without the loop varaible:

foreach expression
statements

end

MPI Jobs
PDriver has support for running MPI Jobs, by using the following two options in the PDS language:

mpiEnabled - boolean switch which indicates the job is to be run in MPI mode. An MPI mode job is based on
a groupsize (see below), with each group step being treated as a single step of the job. A group step is all
groupsize Engines running a step simultaneously. If a single task in an MPI job fails, all other tasks in that
group step are rescheduled.

mpiGroupsize - The number of nodes used in each MPI group step. The number of tasks for the job must be
evenly divisible by this setting.

The above two options go in the options block of a PDS script. Also, the builtin command mpifetch can be
used in the pretask block to fetch a routing table from the Manager containing IP addresses for all Engines
in the current MPI group step. It takes two arguments: a fetch timeout and a destination filename for the
table. To determine which node is the MPI group leader, examine the environment variable
DSMPIGROUPLEADER. It will be set to the string “true” for the Engine chosen as the group leader.

A typical task block for an MPI job would have the following structure:

if $DSMPIGROUPLEADER == "true" then
mpifetch 60 "$DSWORKDIR/route_table"
use an execute command to start the MPI computation

else
use an execute command to run the MPI daemon

end
GridServer Developer’s Guide 69
•
•
•
•
•
•

7

Statements
Note that PDriver MPI jobs may only be run in synchronous mode. Also, if a task fails more than max retries
times and an exception is thrown back to the Driver, the job will cancel. There is no way for the Driver to
recover in this situation.

MPI support was developed and tested with MPICH 1.2.5. Source code is available for download at
http://www-unix.mcs.anl.gov/mpi/mpich/.

See the examples/pdriver/mpi directory in the SDK for sample PDS scripts that use MPI.

Shell Directives in Heterogeneous Environments
It is the PDS script writer’s responsibility to declare a shell directive that is appropriate to the executing
node’s platform. For jobs in heterogeneous environments, different directives can be specified within an if-
then-else block. For example,

if $DSOS == "win32" then shell "cmd.exe" else shell "/bin/bash" end

The argument “none” may be specified, in which case all following execute tasks are spawned directly and
not in a subshell.

It is also possible to use the bash shell with Windows by utilizing Cygwin, the Unix environment for
Windows.

To use bash and Cygwin on Windows machines:

1. Install Cygwin on another machine. It can be obtained from www.cygwin.com.
2. From the Cygwin installation, copy bash.exe and cygwin1.dll into the Engine’s path. This can be

located either in a directory within the %PATH% on the Engine, or the replication directory
<engine_home>/resources/win32/bin. You should also copy any other Cygwin executables you use
from the bash shell.

3. If bash is in the path already for the Engine, use the following syntax in the PDS script:
task

shell "bash.exe"

...

end

or
task

shell "none"

execute stdout="outfile"

 "<optional_path>/bash.exe -c ""mycomamnd.exe"""

end

Or if the path is not set, you can use the following syntax:
task

shell "c:\cygwin\bin\bash"

execute stdout="outfile" "echo hello"

end
0 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

http://www.cygwin.com

The above example also requires you to copy the Cygwin echo.exe to the Engine.

PDriver Examples
Included in this distribution are some simple PDriver scripts. These scripts may be found in the
examples/pdriver directory of the GridServer SDK.

example.pds is a demonstration of the types of commands which can be used with PDriver. The script
provides its own contents as a dummy input file. Each Engine prepends a message reporting the current task
ID and autorange variable value to this input file. The corresponding outputs are copied back to the Driver
at the end of the Service.

pi.pds performs a distributed Monte Carlo calculation of the value of pi. Note that there is a picalc
commandline executable in the bin/<platform> directory of the distribution. It is also available on all
Engines in your GridServer installation. Running PDriver will distribute calculation of Pi across the
network, using autoranged parameters to generate differing seed values for the program’s pseudorandom
number generator. The postjob block runs a script which derives an average of all the values returned.

process-dirs.pds demonstrates how the number of tasks may be derived from a comma separated list of
values, with each value being processed individually. In this case each branch of a shared directory is given
to each Engine for a long directory listing, which is then returned to the Driver. This example only runs on
Unix systems with a network-attached file system.

arrays.pds demonstrates usage of the new range types in PDS, as an alternative to using the CSV format.
GridServer Developer’s Guide 71
•
•
•
•
•
•

7

PDriver Examples
2 Chapter 6 – PDriver
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 7

• • • • • •
 GridCache

Introduction
GridCache is a dynamically updateable
distributed object cache that enables any
GridServer Driver or Engine to store data for
later retrieval by other GridServer
components. While GridServer makes
extensive internal use of object caches,
GridCache is an object cache that is explicitly
exposed through an API for application code
to use directly, to reduce load on backend
datastores and to decrease access time to data.
GridCache provides a caching system similar
to JSR-107 JCache, with an interface as close
to JCache as possible and with a subset of
features.

GridCache is designed to meet the requirements of many informational market data systems, where a
consistent view of object state is extremely important, but it is not necessary to guarantee that every
individual state change (for instance every individual quote move) is processed as a transaction by all
participants.

General Capabilities
GridCache is a general distributed cache that provides a consistent view of data to all clients (Drivers and
Engines) in the Grid. Data is stored in unique regions of the cache. Data can be serializable Java objects,
.NET objects, strings, and byte arrays for C++. The global cache of data can be arbitrarily large, limited only
by the amount of disk space on the Manager. Each component locally caches only the data that has been
requested by users on that component. The local cache of each client, designed to speed up access to
frequently used data, is in-memory with the option in Java Drivers and Engines to spool to disk. The size of
the local cache is configurable through the Engine distribution configuration or the Driver properties file.

API
Access to the GridCache is through a client API available on Drivers and Engines. The API follows the
JCache specification where appropriate. The API is available in Java, .NET, and C++, with cross-platform
access to data provided where appropriate. That is, C++ and Java applications can share XML documents
(strings), but would have little use for sharing Java or .NET objects. You can also use Data References across
different platforms in order to support streaming very large objects. See “Data References” on page 39 for
more information.

FIGURE 7-1: A typical GridCache implementation.
GridServer Developer’s Guide 73
•
•
•
•
•
•

7

General Capabilities
Modes
GridCache operates in one of the following modes:

Local – This mode allows a user to cache data locally by putting elements into the cache. There is no
synchronization between clients that are accessing local cache regions with the same name. This is similar
to having a local hashtable with LRU and eviction based on time-to live from creation time.

Local with loader – This mode allows a user to load data into the local cache using a loader specified at
create time. Puts (cache writes) are not allowed in this mode. Users can manually synchronize clients’
local caches using clear and invalidate methods.

Global – Users can put data into the cache which is then available globally. Full automatic
synchronization occurs in this mode. All components have access to a synchronized view of all entries.

Global with loader – Users can load data into the cache using a global loader. Full automatic
synchronization occurs in this mode.

Cache Configuration and Access
Cache regions are configured through the GridCache Configuration page on the Services menu in the
GridServer Administration Tool. Region names or regular expressions are defined with a set of attributes.
The getRegion method in CacheFactory provides access to the region if it already exists or creates the region
with the mapped attributes. If a region name matches multiple regular expressions from different schemas,
an exception is thrown. A second Cache access method is provided that takes the schema name to provide
dynamic mapping of regions to attribute schemas.

Local and Global loaders are configured with the class name of the loader and the type as arguments to the
constructor. Users can define bean properties for loaders. Loaders are only available in Java and .NET, but
can be used by the C++ API. JNI or managed C++ can be used to implement loaders to access native
resources. Each schema that requires a loader defines the loader within the configuration page.

Changes made to the cache configuration will only take effect the next time regions are created with that
cache configuration. Pre-existing regions that require the configuration changes have to be manually
destroyed and recreated..

Data Storage
All data put to a global cache is stored in a persistent backend datastore on the Broker’s file system. The
Broker’s file cache can be size limited, although the default is no limit. If it is size limited and the cache is
full, the Broker throws an exception when a user attempts to add new data to the cache rather than silently
deleting any data. There is no global resilience when using a memory-based cache; however, a loader can
be used for that purpose.

Attributes
Attributes are defined in schemas and applied to newly created regions. The following types of attributed
can be defined:
4 Chapter 7 – GridCache
•
•
•
•
•
•

This Document is Proprietary and Confidental

TimeToLive: Regions can define a time to live attribute. Data that has been in the cache for longer than
the time to live attribute is evicted, and the user will be forced to reload that data from the backend
datastore. For local caches, the data is evicted locally. For distributed regions, the data is evicted from the
distributed cache meaning the Broker and all clients delete it if they have cached it locally.

Local/GlobalLoader: Used for loading data from a backend datastore. See Cache Loaders, below.

KeepAlive: Specifies how long the client keeps the region and its keys in its local cache after the last
reference to the region goes away.

Consistency/Synchronization
Cache synchronization is performed by propagating update notifications to all clients listening on a region.
These notifications occur any time the region is changed. Specifically, they occur on a put (when an element
already existed), clear, remove, or invalidate. This applies to different region types differently:

Engines: GridCache guarantees that all Engines receive all update notifications by the time they take the
next task or Service request.

Drivers: There are no synchronization guarantees for the Driver. The Driver receives notification
messages the next time it performs a request, polls the server for results, or sends a heartbeat.

Cache Loaders
Loaders provide an optional mechanism for loading data into the cache from a backend datastore, such as a
relational database. Users can implement and associate Cache Loaders with a region of the cache. These
Cache Loaders can be installed locally on the client (Driver or Engine) or globally, in the GridServer Broker.
Global

A Global Cache Loader is used for synchronized regions from which all clients can accessd data.

• Global loaders are defined and configured in the schemas.
• When other clients get access to that region, they automatically are using that loader.
• A client can specifically pre-load data into the cache by explicitly calling the load method with a single

key or a list of keys.
• If a get is performed and data is not found, the loader then attempts to load for that key by calling the

loader’s load method.
• Puts are not allowed on regions with loaders.
• Global loaders are written in Java, but can be bridged to native or .NET code through JNI.
• Global CacheLoader JAR files are deployed to the lib directory in the cache directory. By default, the

cache directory is [GS Manager Root]/webapps/livecluster/cache, or [Alt Basedir]/cache if you are
using an alternate base directory. The cache directory is configurable in the Cache section of the
Manager Configuration page in the Administration Tool.

Local

A local loader is essentially used to cache data locally from an external database. Local loaders are not
shared by clients.

• Puts (writes) are not allowed, as it is a local cache, and data is not propagated to other clients or regions.
GridServer Developer’s Guide 75
•
•
•
•
•
•

7

General Capabilities
• Removing an item is not allowed; instead, you invalidate items, which causes that item to be removed
from other client’s caches.

• Local loaders can only be .NET or Java. CPP loaders can be adapted through JNI or managed C++.

Cache Loader Write-through and Bulk Operations
In order to simplify use of back end datastores in conjunction with GridCache, it’s sometimes desirable to
add a means for supporting store and remove methods on the loader rather than just supporting it purely as
a data fetching mechanism. It’s also sometimes desirable that such methods can be done in a batch form,
such that a cache can be “primed” with entries via a bulk load method or that multiple objects may be stored,
removed and invalidated via a single method to cut down on per-store operation overhead.

Loaders can inherit from two interfaces that support methods for supporting store and remove methods on
the loader. The preload methods are exposed in the BulkCacheLoader interface. The store, remove and clear
methods are exposed in another interface, CacheStore, and can be used by the underlying cache mechanism
for modifying the content of cache puts and removals on the backend datastore. The cache mechanism can
then invalidate the corresponding entry or entries for all other caches listening on that region, if applicable.

It is possible that the backend store may be updated, but an invalidation message will fail to be sent to all
other clients. If this scenario is detectable, an exception indicating a loss of synchronization will be thrown,
but it is up to the cache client to handle recovery from that point on.

The caching system in GridServer does not provide a mechanism to auto-update data in the cache when it
changes in the backend, if done so by a mechanism other than those offered by the CacheStore interface.

Support for datastore write-through, bulk write-through, remove, bulk remove and bulk load are available
on both global and local loaders, in Java and .NET.

Notification
GridCache provides an optional mechanism whereby you can implement a class that listens for update
notifications. An update is defined to be either an invalidation call on a loaded object or on a put call on a
key that exists in the cache already. You can then take any action desired such as updating local copies of
the object or data to the new version or ignoring the update completely. The next time that the data is
requested from the cache, GridCache fetches and locally caches the most current version of that data.

Disk/Memory Caching
Cache puts (or writes) when the cache is full will push the oldest element out of the cache, possibly into the
backing disk cache or possibly removed entirely. This makes the caches LRU caches. Users can configure
the size of the local cache and the size of the backing disk cache. For Drivers, configuration is in the
driver.properties file. For Engines, the configuration is in the Engine configuration. If disk caching is
configured, then any puts into the memory cache when the memory cache is full forces the oldest element
out of the memory cache into the disk cache. Any access to a cache element that has to get the element from
the disk cache brings the element into the memory cache. There is no disk-backed cache for CPP Drivers.
6 Chapter 7 – GridCache
•
•
•
•
•
•

This Document is Proprietary and Confidental

Cache Region Scope
Global cache regions exist until they are destroyed through the destroy method regardless of whether any
client has a reference to that region. For that reason, it is important to destroy global regions when they are
no longer needed, as this will impact eviction performance.

After all references to a cache region on a client go out of scope, local cache regions persist on clients until
their keepalive timeout. At that point, the region will be swept from the cache. A close() method is provided
to explicitly release a reference to a region. If the close method is not called, garbage collection will handle
decrementing references to the region. However, garbage collection is never guaranteed so the keepalive
timeout is not a guaranteed timeout. Using the close method is recommended.

Using The GridCache API
Details about the GridCache API can be found in the GridServer API JavaDocs, available in the GridServer
Administration Tool on the Documentation page of the Admin tab. Documentation for the Cache interface
covers the use of GridCache.

The GridCache API supports the following primitives:

GridCache constructor with CacheFactory
To create a new GridCache instance, you use the CacheFactory to get a reference to a particular region. On
a particular client component, multiple instances of a GridCache can be constructed with the same region,
but each exposed instance with the same region shares the same underlying implementation. This allows
multiple Sessions to share the same view of a cache without having to duplicate the storage or the code.

Put and Get
The put method writes to the cache a new entry for a key and object, while the get method returns the object
stored in the cache for a given key. If you use the get method on a key that does not exist and the region has
an associated loader, an attempt is made to load the data for that key from the loader.

Keys
A Key is a string that is used to refer to an object in the cache. The keys method gets a list of all keys
currently stored on the Manager for this cache for a global region type. For local region types, it gets a list
of locally cached keys.

Remove
Removes this object from the region, from the Manager, and from all distributed caches.

Clear
Clears all objects from the region, Manager, and regions on other components.
GridServer Developer’s Guide 77
•
•
•
•
•
•

7

Fault Tolerance and GridCache
Invalidation handlers
By default, GridCache implements a lazy invalidation mechanism where the caller is only told that his
version of an object is out-of-date when he makes a fresh “get” call for the object. The invalidation handler
interface lets the caller register/deregister for asynchronous notification that his local copy of an object has
been invalidated by a get, put, remove, or clear.

Fault Tolerance and GridCache
GridCache supports fault-tolerance. For more information, see “GridCache Fault-Tolerance” on page 27 of
the GridServer Administration Guide.
8 Chapter 7 – GridCache
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 8

• • • • • •
 GridServer Design Guidelines

This chapter discusses two important aspects to consider when designing an application to run on
GridServer, data movement and task or Service request duration. There are a variety of ways to move data
among the machines involved in an application; the first section considers their characteristics, and suggests
which to choose under various circumstances. In dividing a problem into a set of tasks or Service requests,
the programmer can usually choose how many to use, or equivalently, how much time each one should take.
The second section discusses factors that can influence this decision.

Data Movement
Every distributed computation ultimately comes down to local computation — a single computing process.
Every piece of input data must be moved across the network from wherever it resides to the machine that
needs to process it, and every piece of output data must travel over the network from the machine that
produced it to its ultimate destination. Additionally, caching can be used to optimize data movement,
providing a strategy for lowering the amount of data transfer. Moving large amounts of data over a network
efficiently is a crucial aspect in the design of most distributed applications. Efficient data movement can
often make a dramatic difference in performance.

Principles of Data Movement
Good data movement design can be summarized in two principles:
Move each piece of data over the network as few times as possible — preferably just once. Obviously, the
less that data is moved, the less time it will take to move it. But the many layers of abstraction offered by
modern computer systems can hide data movement, making it harder to see the bottlenecks. Network file
systems are a good example: there is no way to tell from reading the code whether a file is being read from
the local disk or over a network, but the performance difference can be enormous.
Move data as early as possible — preferably before the computation starts. Doing so improves the
performance of the computation for the simple reason that the stopwatch that times the computation is
started after the data movement has already occurred. But this is more than a mere accounting trick. Consider
a nightly report that must be run after 5 PM to avoid conflicting with daytime jobs. If the data for the report
is available at 4 PM, it can be distributed to Engines in the hour before the report runs.

Data Movement Mechanisms
Service Request Argument and Return Value The most direct way to transmit data between a Grid client and
an Engine is via the argument to a Service request and the return value from that request (task input and task
output, in the Job/Tasklet terminology). If Direct Data Transfer is enabled, the data will travel directly
between Driver and Engine.

Although each request is handled efficiently, the aggregate data transfer across hundreds of requests can be
considerable. Thus any data that is common to all requests should be factored out into session state or init
data, or distributed via some other mechanism.
GridServer Developer’s Guide 79
•
•
•
•
•
•

8

Data Movement
Service Session State Any Service Session (or Job) can have state associated with it. As described in the
Services chapters, this state is stored on the Driver as well as on each Engine hosting the instance, so it is
fault-tolerant with respect to Engine failure.

Service Session state is ideal for data that is specific to a session. Service Session state is easy to work with,
because it fits the standard object-oriented programming model; it is downloaded only once per Engine.

This peer-to-peer data transmission from Driver to Engine is GridServer’s Direct Data Transfer feature,
enabled by default. When Direct Data Transfer is enabled and a Service creation or Service request is
initiated on a Driver, the initialization data or request argument is kept on the Driver and only a URL is sent
to the Manager. When an Engine receives the request, it downloads the data directly from the Driver. This
mechanism saves one network trip for the data and can result in significant performance improvements when
the data is much larger than the URL that points to it, as is usually the case. It also greatly reduces the load
on the Manager, improving Manager throughput and robustness.

Shared Directories and DDT In some network configurations, it may be more efficient to use a shared
directory for DDT rather than the internal fileservers included in the Drivers and Engines. In this case, the
Driver and Engines are configured to read and write requests and results to the same shared network
directory, rather than transferring data over HTTP. All Engines and the Driver must have read and write
permissions on this directory. Shared directories are configured at the Job and Service level with the
SHARED_UNIX_DIR and SHARED_WIN_DIR options. If using both Windows and Unix Engines and Drivers, you
must configure both options to be directories that resolve to the same directory location for the respective
operating systems.
Resource Update GridServer’s Resource Update mechanism will replicate Grid Libraries, or archives of
versioned sets of resources, with Engines. It will also replicate the contents of a directory on the Manager
to a corresponding directory on each Engine. Using Resource Update involves using the Resource
Deployment page in the GridServer Administration Tool to upload files to the Manager. You can also copy
the files you want to distribute into a directory on the Manager. Once all currently running Services have
finished, the Engines will download the new files. For more on Resource Update, see Chapter 7,
“Application Resource Deployment” on page 43 of the GridServer Administration Guide

Resource Update is the best way to guarantee that the same file will be on the disk of every Engine in your
Grid. File Update is ideal for distributing application code, but it is also a good way to deliver configuration
files or static data to Engines before your computation starts. Any kind of data that changes infrequently,
like historical data, is a good candidate for distribution in this fashion.
GridCache GridServer’s GridCache feature consists of a repository on the Manager that is aggressively
cached by components (Drivers and Engines). The repository is organized as a set of regions, each of which
is a map from string keys to arbitrary values. The GridCache API supports reads, writes and removing key-
value pairs and getting a list of all keys in a catalog. For more information on GridCache, see Chapter 7,
“GridCache” on page 73.

A GridCache component caches every value that it gets or puts. If a component changes a key’s value or
removes it, the Manager asks all components to invalidate their cached copy of that key’s value.

GridCache is fault-tolerant with respect to Engine failure, because the data is stored on the Manager. When
an Engine fails, its cached data is lost and its task is rescheduled. The Engine that picks up the rescheduled
task will gradually build up its cache as it gets data from the Manager.
0 Chapter 8 – GridServer Design Guidelines
•
•
•
•
•
•

This Document is Proprietary and Confidental

GridCache is a flexible and efficient way for Engines and Drivers to share data. Like File Update, an Engine
needs only a single download to obtain a piece of constant data. Unlike File Update, GridCache supports
data that changes over the life of a computation.

GridCache can also be used for Engines to post results. This is generally only useful if those results are to
be used as inputs to subsequent computations.
Data References GridServer Data References are objects that represent data existing on a GridServer client.
They can be used for passing of lightweight data from one client to another, so that only the destination
needing the data performs the data transfer. Typically, the data is stored on the client filesystem, and is served
by another client’s fileserver.

Data Movement Examples
We illustrate the data movement mechanisms discussed above by variations on a single example:
determining the value of a financial instrument. At the heart of this computation is a method we will call
value that takes two arguments, a deal and a pricing scenario. The deal argument contains all information
specific to a particular financial instrument (bond, derivative security, and so on) needed to determine its
value, such as coupon, maturity date, underlying security, and so on. The pricing scenario argument contains
all other determinants of the deal’s value, such as interest rates, prices of underlying instruments, etc. The
output of the value function is a single number representing the value of the deal under the given pricing
scenario.

Typical applications require the value of many deals over one or several pricing scenarios. To distribute and
parallelize this computation, we execute the value function simultaneously on many Engines. We assume
the code for the value function is available to each Engine (whether by Resource Update or over a network
file system). We also assume that the numbers returned by the value function make their way back to the
client via the standard Service return value mechanism. The question we want to consider is how to get the
deal and pricing scenario information to the Engines.
Database Access We
first look at the deal
information itself,
which we assume is
stored in a database or
data server somewhere
on the network. Should
the Driver load the deal
information from the
data server and send it
to the Engines as in the
left-hand diagram in
Figure 8-1, or should
the Driver send just the
unique identifier and have each Engine access the data server on its own, as illustrated in the right-hand
diagram?

FIGURE 8-1: Data Flow Between A Driver, Two Engines and A Data Server
GridServer Developer’s Guide 81
•
•
•
•
•
•

8

Data Movement
The second choice is better because less data will move across the network to accomplish the same end
result. In the first diagram the data moves across the network twice, once from the data server to the Driver
and second from the Driver to the Engine. In the second diagram, the data moves across the network only
once from the data server to the Engine. Also, the data only needs to be marshalled and unmarshalled once.

The second approach also increases parallelism at the data server. In the first case, only the Driver is
attempting to load data from the data server. In the second, multiple Engines will attempt to load data
concurrently. Assuming that the data server can handle the load, the second way will result in increased
parallelism.

Single Pricing Scenario We now consider the case in which a single pricing scenario is used to evaluate
many deals. Here is one (suboptimal) way to organize this computation. We assume throughout that a
Service containing the value function has been deployed and registered.
Algorithm 1 (suboptimal):

1. Create a Service Session of the value service.
2. For each deal, submit the deal identifier and the pricing scenario as an asynchronous request to

the Service Session.
3. Wait for results.
Although this algorithm will get the job done, it needlessly sends the same pricing scenario multiple times.
This is an ideal application of Service Session state:
Algorithm 2:

1. Create a Service Session of the value service, initialized with the pricing scenario.
2. For each deal, submit the deal identifier as an asynchronous request to the Service Session.
3. Wait for results.
By making the pricing scenario be part of the session’s state, it will be transmitted only as many times as
there are Engines that implement the session, rather than once per request. GridServer will never allocate
more Engines to a Service session than there are requests for that instance, so Algorithm 2 will never move
more data than Algorithm 1. And in the likely event that there are many more requests than Engines (we
argue below in the Task Duration section why this is a good idea), Algorithm 2 will move much less data
than Algorithm 1.
Several Pricing Scenarios What if the application needs to value the portfolio of deals for more than one
pricing scenario? One approach is simply to repeat Algorithm 2 several times, creating a new Service session
for each pricing scenario. It is also possible to use a single session and employ the updateState method of
the Service client API to transmit each successive pricing scenario to the Engines running the session. If the
differences between pricing scenarios are small and they are used to perform the update instead of the
pricing scenarios themselves, then using updateState can result in a considerable data movement savings;
even if the pricing scenarios themselves are used as updates, this approach is still likely to be superior to
using separate instances.

Multiple Pricing Scenarios Available Early Now let us add the following wrinkle: we still want to compute
the value of many deals over many pricing scenarios, but the pricing scenarios are available to us some time
before we can run the application. For instance, pricing scenario information may be available at 4 PM, but
we cannot start the nightly report until 5:30 PM, to avoid interfering with daily work. In this situation, we
can exploit the time gap to push information to the Engines before the computation starts. One approach
2 Chapter 8 – GridServer Design Guidelines
•
•
•
•
•
•

This Document is Proprietary and Confidental

would be to use File Update to put all the pricing scenario data on all the Engines. Another would be to put
the pricing scenario data into GridCache and run a “primer” Service that copies the data to the Engines. The
trade-offs between these two approaches were discussed above under Data Movement Mechanisms.

Deal-Pricing Scenario Symmetry Finally, we point out that deals and pricing scenarios are for the most part
symmetric in these examples (the main difference being that pricing scenarios are less likely to be indexed
by primary key in a database, so the discussion of deal identifiers versus deal data does not apply to them).
For instance, if deals are available to you early, you can use File Update or GridCache to push deal
information to Engines before your application starts.

Service or Task Duration
Service or Task duration has an important impact on the performance of distributed computations. Recall
that a task corresponds to a single Service request when using Services, or a single task input when using
the Job/Tasklet API. Tasks should be long enough to compensate for communication overhead, but not so
long that their interruption would seriously delay the overall computation. Dividing the work into more tasks
each of which takes less time can also mitigate the performance degradation that can arise from having tasks
of different sizes. We discuss these issues in detail in the following sections.

As a running example, we use the deal valuation problem discussed in the previous section on data
movement. There we assumed that each task was responsible for pricing a single deal. But this is unlikely
to be efficient for most types of deals; instead, several deals should be grouped together in a single task.

Engine Interruption and Smoothing
If an Engine is interrupted or fails during a task, that task will have to run again from the beginning.
Therefore, a task should not take a long time to execute. The shorter the task, the less work lost when an
Engine fails.

Even if no Engine fails, shorter tasks result in better performance by reducing the variability of task
durations. It is rare to know exactly how long every task in a computation will take.

For example, say we divide the work so that there is one task per available Engine, thinking that this
minimizes communication overhead and believing that no Engines will fail. However, we estimate task
durations wrongly and end up with one task that takes twice as long as the others. Since the computation is
not complete until all tasks have finished, the extra-long task will dominate the computation time. For
instance, if we have ten Engines, nine tasks that each take one minute, and one task that takes two minutes,
then our computation will take two minutes, with the last minute consisting of nine idle Engines and one
Engine still working on the two-minute task. With exactly as many tasks as Engines, it is a certainty that our
program will run as long as the longest task. (Here and for the rest of the section, we neglect communication
time to simplify the discussion.)

If instead we use twice as many tasks as Engines, we significantly improve our expected running time. To
continue the above example, if we divide each task in two then we have 20 tasks to give to our ten Engines:
18 tasks of 30 seconds each, and two tasks of one minute each. Each Engine will take two tasks, effectively
at random. The chance of the same Engine getting both long tasks is fairly small, so we would expect this
program to take one minute 30 seconds most of the time.
GridServer Developer’s Guide 83
•
•
•
•
•
•

8

Service or Task Duration
Similar reasoning shows that more, shorter tasks smooth out the effect of different processor speeds. Assume
that all tasks take the same time, but that one Engine is slower than the others. If there is exactly one task
per Engine, the slow Engine will determine the computation time. If there are many, very short tasks, then
the slow Engine will take fewer tasks than the other Engines, and all Engines will finish at close to the same
time, minimizing the time for the whole computation.

Auto-packing
Because communication overhead involved with each task may make very small tasks inefficient, there is a
feature called auto-packing to alleviate this problem. Auto-packing enables you to process multiple requests
per task. When set as a Job or Service option, it encapsulates multiple task inputs or Service requests into a
single task, which has the overhead of just one task.

To facilitate tuning, it is wise to make task duration, or a related quantity such as number of tasks, a
parameter of your application. GridServer’s autopacking feature can automate this. Create one task input per
item (such as a trade), and set the Job or Service option AUTO_PACK_NUM to a positive value to group inputs
together. For example, setting AUTO_PACK_NUM to 5 will result in each task containing 5 task inputs or Service
requests.

Summary
Communication overhead dictates that tasks should take a long time, but the possibility of Engine failure
and the opportunity to smooth over differences in task durations and processor speeds suggest that there
should be many quick tasks. What is a good compromise? We recommend task running times between 30
seconds and several minutes, and a number of tasks that is three or four times the number of available
Engines.
4 Chapter 8 – GridServer Design Guidelines
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 9

• • • • • •
 Using Discriminators

Introduction
In a typical Grid environment, not every machine will be identical. Some machines may be slower, or have
less RAM. Other machines may be faster, but it may be a priority to use them to capacity during the day.
Depending on the Services you have and the general demographics of your computing environment, the
scheduling of Services to Engines may not be clearly deterministic. And sometimes, a specific Service may
require special handling to ensure that optimal resources are available for it.

Discrimination is a feature of GridServer that allows you to selectively use Engines based on their
properties. Discrimination gives you dynamic control over the connections among Drivers, Brokers and
Engines. Discrimination works by specifying which properties an Engine must possess in order to take a
Task.

Note: This material is covered in depth with code samples in the GridServer Object-Oriented Integration
Tutorial. This lesson is designed for readers who want a conceptual reference to discriminators.

Engine Discrimination
Engine Discrimination selects Engines for particular Services based on Engine properties. Engine
Discrimination has many uses:

• You can limit a Service to run on Engines whose usernames come from a specified set, to confine the
Service to machines under your jurisdiction.

• You can limit a resource-intensive task to run only on Engines whose processors are faster than a certain
threshold, or that have more than a specified amount of memory or disk space.

• You can direct a task that requires operating-system-specific resources to Engines that run under that
operating system.

You can invent your own properties for Engines and choose them based on those priorities in order to
achieve any match of Engines to tasks that you desire.

Setting Discriminators
Discriminators can be set by the Driver, or they can be dynamically attached to a Service based on its
Description on the Manager. You can set a discriminator for a Service, or each Task. In Java, the GridServer
classes related to discrimination are in the com.datasynapse.gridserver.discriminator package. Although
there are several classes, you will most likely need to use only PropertyDiscriminator.

If you change properties of Engines, these changes will take effect during the execution of a Service. For
example, if a discriminator attached to a running Service is configured to look for a certain Engine property,
changing this property can change what Engines will work on that Service.

Discriminators are, however, attached to a Service when the Service is created, so changes you make to the
discriminator will only affect subsequently submitted Services, not Services that are already running.
GridServer Developer’s Guide 85
•
•
•
•
•
•

8

Engine Properties
For example, to set a Job discriminator in Java:

You can also attach discriminators to Services
using the Discriminator Admin page on the
Services tab of the GridServer Administration
Tool. This page lets you create discriminators
by entering two defining factors: the Services
that will be affected by the discriminator, and
what types of Engines will then be able to run
on those Services. This differs from
programatic discriminators because they aren’t
explicitly attached to a Service at its creation;
instead, a group of Services is defined as being
attached to that discriminator, by Service name,
application name, department name, or
wildcards on that or other criteria.

Note that multiple discriminators are ANDed
together. For example, if you set two discriminators on a Service, both must be met for an Engine to work
on the Service.

Engine Properties
Within GridServer, each Engine has a set of properties. Some Engine properties are set automatically by
GridServer, such as the Engine’s operating system and the estimated speed of the Engine’s processor. Users
can also create custom properties for Engines.

Default Properties
An Engine has several properties set by default, with values corresponding to the host machine running the
Engine. You can use these properties to set discriminators. The default properties, available in all Engines,
can be found in the API documentation, and on the Discriminator Admin page, on the Services tab.

Example 9.1: Setting a Job Discriminator in Java
Properties props = new Properties();
PropertyDiscriminator pd = new PropertyDiscriminator();
// only run on Engines with > 50 Mflops
pd.addComparator(new PropertyComparator(EngineProperties.TOTAL_CPU, "50",
PropertyComparator.GREATER_THAN_EQ, false));
// don't run on win32 Engines
pd.addComparator(new PropertyComparator(EngineProperties.OS, "win32",
PropertyComparator.NOT_EQUALS, false));

job = new SimpleJob(10);
job.getOptions().setDiscriminator(pd);
job.execute();

FIGURE 9-1: The Discriminator Admin page.
6 Chapter 9 – Using Discriminators
•
•
•
•
•
•

This Document is Proprietary and Confidental

Custom Properties
In addition to the default properties included in each Engine, you can create your own custom Engine
properties, and give them at values Engine installation. There are two steps involved: first, you create the
property on the Manager, and then you give it a value for each Engine, either at installation or from the
GridServer Administration Tool.

Creating a New Property
To create a new custom property in the GridServer Administration Tool, click the Engine tab, then click the
Engine Property List page. Enter a property name and a brief description, then click Add. You can now set
a value to this property on any Engine.

Setting a Property Value
To add custom properties to an Engine, in the Administration Tool, click the Engine tab, then click the
Engine Properties page. Select an Engine from the list, and its current properties and values will be
displayed. You can select a property name from a list, enter a value, and click Add.

You can also simultaneously set properties on a large group of Engines by going to the Engine Daemon
page of the Administration Tool and selecting Set Property for Daemons on Page or Set Property for All
Daemons from the Global Actions list. This opens the Engine Property Group Editor page, which
displays user-defined properties that can be set on Engines started by a Daemon. Select one or more Engine
Daemons from the list, then select a predefined property and enter a value, or enter a new property name and
assign a value.

To assign property values on Engine install, you must install the 1-Click Install with Properties Engine for
Windows. You will then be prompted for values for each custom property. If you install a Unix Engine, the
default installation script will also ask for values for each custom property on the Manager.

Session Properties
SessionProperties are properties that can be used for discrimination, that last for the duration of an Engine
session on the Manager. They are set on an Engine and reset when the Engine logs off.

An example of how to set a Session Property:
 public void init() {
 // initialize some static data for use by another service
 EngineSession.setProperty("inited", "true");
 // this property can now be used by the discriminator of the other service
 }

See the API documentation for the EngineSession class for more information.

PDriver Discrimination
When writing a PDS script, you can create job-level or task-level discriminators to limit which Engines work
on a PDriver job or Task. The discriminator block specifies either a job-level or task-level discriminator
for a job.

For more information on PDriver discriminators, see “The Discriminator Block” on page 62.
GridServer Developer’s Guide 87
•
•
•
•
•
•

8

Dependencies
Dependencies
Dependencies allow workflows to be submitted to a Broker without the need of an active Grid client to
manage dependencies (wait for completed tasks, submit more based on successful outcome, and so on).
When a Session is submitted, one or more Tasks or entire Services can be required to be completed prior to
the Service being scheduled. These dependencies can be Sessions or Tasks already submitted, or ones that
have not yet been created. This way, multiple Tasks in different Jobs/Services can be submitted, but they
will not be eligible for scheduling until certain conditions are met—namely the successful completion of
specific Tasks or Sessions.

Creating Dependencies
Dependencies are exposed as a condition which can be being applied to Services or a Task. This condition
has methods for adding dependencies in the form of a Session ID, and for an optional Task ID. Dependencies
also allow a Boolean operation that dictates whether a failure of the dependent Task/Service should cause
the entire Task/Service to be canceled.

A forward dependency can be created for a Session, and optional Task ID, that does not yet exist. A forward
dependency is created by generating a reference ID to that Session, and then using that ID when eventually
creating the Session.

In Java, com.datasynapse.gridserver.client.DependencyFactory is used to create dependency conditions.
More than one dependency can be assigned by using a ConditionSet. C++ and .NET APIs are similar. See
the GridServer API documentation for more details.

If there is no session with the dependent service ID on the Broker when the session or task with dependencies
is added, it is automatically cancelled with the reason that the dependency does not exist. If it is a forward
dependency, no such cancellation will be made.

If a Session or Task has a dependency and the dependency failed, the Session or Task can be specified to be
cancelled

If a non-forward dependency is made, and the session does not exist, the task is always cancelled.

Administering Task Dependencies
Dependencies can be viewed in the GridServer Administration Tool on the Service Session Admin page on
the Service tab, or from the Task Admin page, available from the Actions list on the Service Session
Admin page. and Service Admin pages. On either page, select Service Session Details or Task Details from
the Actions list, and in the details, a list of dependencies will be shown, noting which are pending and which
have completed.

Dependencies can be removed from a Task or Service with the Remove Dependencies action on the
Actions list on the Task Admin page. This will remove the entire Dependancy object, which removes all
pending dependencies; there is not a way to remove a single dependency from the Administration Tool.

Note that Task Dependencies are Broker-scope, and rely on Service and Task events on a Broker. They do
not work across Brokers.
8 Chapter 9 – Using Discriminators
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 10

• • • • • •
 GridServer Admin API

Introduction

The GridServer Admin API offers programmatic access to administrative tasks and information normally
performed or presented in the web-based GridServer Administration Tool. It is available via Java, C++, and
.NET Drivers, on Managers via Manager Hook, and from SOAP Web Services.

Documentation for the GridServer Admin API
Detailed documentation on GridServer Admin API can be found in the API documentation. Also, the WSDL
for Services can be retrieved at the Web Service List page on the Manager tab in the GridServer
Administration Tool.

The following components are defined:

• BatchAdmin
• BrokerAdmin
• DriverAdmin
• EngineAdmin
• EngineDaemonAdmin
• ManagerAdmin
• ServiceAdmin
• DriverManager
All GridServer API methods require HTTP basic authentication, and the methods allowed are based on the
access level of the user. Note that methods will return null if there is no output, as opposed to returning a
zero-length array. For example, EngineAdmin.getAllEngineInfo() will return null if there are no Engines
currently logged into the Broker.

Drivers services require authentication and an associated Driver Profile with the user if Driver
Authentication is enabled.

Access Level Requirements and Availability for Admin API
Admin API functionality is limited according to a user’s Access Level, which is a tiered security level
assigned to each GridServer user’s account. There are four Access Levels: View, Service, Manage, and
Configure. Also, some Admin API functionality varies, depending on the components available in a
Manager. The following table shows what methods in each class are available for each Access Level:
GridServer Developer’s Guide 89
•
•
•
•
•
•

9

Access Level Requirements and Availability for Admin API
Access Level Class Method

View level
ServiceAdmin isAvailable, getServiceCount, getRunningServiceCount, getCompletedServiceInvocationCount,

getFinishedServiceCount, getServiceInvocationCount, getRunningInvocationCount,
getPendingInvocationCount, getRunningServiceInvocationCount,
getPendingServiceInvocationCount, getServiceInfo, getAllServiceInfo, getInvocationCount,
getInvocationInfo, getSelectedInvocationInfo, getSelectedServiceInfo, getServiceIds

EngineAdmin isAvailable, getEngineInfo, getAllEngineInfo, getEngineCount, getBusyEngineCount,
getEngineIds, getSelectedEngineInfo.

EngineDaemonAdmin isAvailable, getEngineDaemonCount, getEngineDaemonInfo,
getAllEngineDaemonInfogetEngineDaemonIds, getSelectedEngineDaemonInfo

DriverAdmin getDriverCount, getDriverInfo, getAllDriverInfo, getDriverProfileCount, getDriverProfile,
isAvailable, getAllDriverProfiles

BrokerAdmin isAvailable, getBrokerCount, getAllBrokerInfo, getBrokerInfo

ManagerAdmin isAvailable, getBrokerUrl, getLicenseInfo, getVersion, getBusyEngineCount, getEngineCount,
getFinishedServiceCount, getPendingInvocationCount, getRunningInvocationCount,
getRunningServiceCount, getServiceCount

BatchAdmin isAvailable

Service level
Contains all from the View Level plus the following:

BrokerAdmin getDescriptionDiscriminators

EngineAdmin getLogUrlList,

EngineDaemonAdmin getLogUrlList

ServiceAdmin cancelService, cancelAllServices, removeFinishedService, removeAllFinishedServices,
setPriority, cancelInvocation, getServiceBinding, getRegisteredServices, setExpires

Manage level
Contains all from the Developer Level plus the following:

EngineAdmin killEngine, killAllEngines

EngineDaemonAdmin setProperty, removeProperty restartEngineDaemon, setAllEnabled, setAllStartMode,
setConfiguration, setEnabled, setInstances, setStartMode, restartEngineDaemonByComparator,
setConfigurationByComparator, setEnabledByComparator, setInstancesByComparator,
setStartModeByComparator

BrokerAdmin addDescriptionDiscriminator, deleteDescriptionDiscriminator, addDriverRoutingComparator,
addEngineRoutingComparator removeDriverRoutingComparator,
removeEngineRoutingComparator, setDriverWeight, setEngineWeight, setMaximumEngines,
setMinimumEngines

Manager Admin getEvents, getSubscribers, getSubscriberEvents
0 Chapter 10 – GridServer Admin API
•
•
•
•
•
•

This Document is Proprietary and Confidental

The following table shows what Manager components are required to use Admin API classes and methods:

BatchAdmin getAllBatchInfo, getBatchCount, getBatchInfo, getRunningBatchCount, removeBatch
removeFinishedBatches, resumeBatch, suspendAllBatches, suspendBatch,
getBatchExecutionCount, getBatchExecutionIds, getBatchExecutionInfo,
getBatchExecutionInfoByBatchId, getBatchIds, getRunningBatchExecutionCount,
getScheduledBatchCount, getSelectedBatchExecutionInfo, getSelectedBatchInfo,
removeBatchExecution, removeFinishedBatchExecutions, getAllBatchExecutionInfo

Configure level
Contains all from the Manage Level plus the following:

ServiceAdmin registerService, unregisterService

EngineDaemonAdmin getDefaultProperties, setDefaultProperty, removeDefaultProperty, setDirectors,
setDefaultCodeVersion, setDefaultCodeVersionByComparator, setDirectorsByComparator

DriverAdmin addDriverProfile, deleteDriverProfile, setDefaultProperty, removeDefaultProperty,
getDefaultProperties

ManagerAdmin subscribe, unsubscribe, getCategoryNames, getCategory, setValue

BatchAdmin getBatchFileNames, addBatchFile, deleteBatchFile, getBatchFile, scheduleBatchFile,
addBatchDefinition, deleteBatchDefinition, getBatchDefinition, getBatchDefinitionNames,
scheduleBatchDefinition

Class Method

Requires Broker: ServiceAdmin All

EngineAdmin All

DriverAdmin All

BatchAdmin All

Requires Director: EngineDaemonAdmin All

BrokerAdmin All

ManagerAdmin getEngineCount,
getBusyEngineCount,
getServiceCount,
getRunningServiceCount,
getFinishedServiceCount,
getPendingInvocationCount,
getRunningInvocationCount

Requires Primary
Director:

ServiceAdmin registerService,
unregisterService

EngineDaemonAdmin removeProperty, setProperty,
setDefaultProperty,
removeDefaultProperty

Access Level Class Method
GridServer Developer’s Guide 91
•
•
•
•
•
•

9

Using The ServiceClient Web Service
Using The ServiceClient Web Service
Services can be created and run by using the ServiceClient Web Service. The following explains how to use
the ServiceClient Web Service:

• Use the DriverManager service’s getWebServicesURL on a Director to retrieve the web service’s URL of
an appropriate Broker. This service should then be used. Use the ping method to keep the session alive in
the absence of any other activity.

• The createService, execute, destroy and updateState methods behave as they do in the language APIs
(see Chapter 3, “Creating Services” on page 23 for details and examples).

• Asynchronous submission is accomplished via the submit, collect, and collectAck methods. Each call
to submit returns an integer request ID unique to that call. Poll for results periodically by invoking
collect, which returns the result of every completed request, matched with their request IDs. After
collect returns, invoke collectAck to acknowledge receipt of the request results, so that completed
requests can be purged from the Manager.

Using the Admin API over SOAP
The following is an example of using the Admin API over SOAP with Java:

1. Locate the WSDL for the Admin Service from the Manager's Web Service List. For example, to use
the EngineDamonAdmin class, http://example:8000/livecluster/webservices/EngineDaemonAdmin?wsdl

2. Generate Java Stubs for the Service. For example, using Axis:

org.apache.axis.wsdl.WSDL2Java
http://example:8000/livecluster/webservices/EngineDaemonAdmin?wsdl

3. Use the Stubs. For example:

 // Get the interface to the Admin Service
 EngineDaemonAdmin server = (new EngineDaemonAdminServiceLocator()).getEngineDaemonAdmin();

 // Required when Driver authentication is enabled
 ((Stub)server).setUsername("admin");
 ((Stub)server).setPassword("admin");

 // Maintain the session id for each request
 ((Stub)server).setMaintainSession(true);

 // Query the Admin Service
 EngineDaemonInfo[] info = server.getAllEngineDaemonInfo();

Requires Primary
Director: (cont.)

DriverAdmin deleteDriverProfile,
addDriverProfile

BrokerAdmin All except getBrokerCount,
getBrokerInfo,
getAllBrokerInfo

Class Method
2 Chapter 10 – GridServer Admin API
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 11

• • • • • •
 Extending GridServer

Introduction

The GridServer Manager and Engine can both be extended with Manager and Engine Hooks. A Manager
Hook enables you to interface your own Java object directly with the Manager’s event processing
mechanism, and interact with any Server Event. An Engine Hook can perform user-defined operations on
Engine startup or termination.

A Hook consists of two parts: the class implementation of the Hook, and the Hook registration. Manager
Hooks are registered on the Hook Admin page, while Engine Hooks are registered with an XML file that
is deployed to Engines.

Manager Hooks
Manager Hook implementation details are discussed in the JavaDoc documentation for the ServerHook
class. You will also find examples on creating a Manager Hook in the GridServer SDK, in the
examples/hooks/server directory. After implementing a Manager Hook, its class definition must be
contained in a JAR file in the shared classes directory (WEB-INF/hooks/component, where component is either
broker or director).

Manager Hooks can be created on the Broker or the Director. Depending on where the hook resides, it can
receive a different subset of the Server Events broadcast by the Manager. See the JavaDoc for the
ServerEvents class for more details on the events available and which components to which they are
relevant. For example, a hook that needs to be aware of when an Engine has been added or removed would
have to run on the Broker, because the ENGINE_ADDED and ENGINE_REMOVED events are Broker-specific.

To register a Manager Hook in the GridServer Administration Tool, click the Admin tab and click Hook
Admin. The Hook Admin page enables you to edit, enable, or disable hooks on the Manager To add a new
hook, select Create New Hook from the Global Actions list. This opens a Hook Editor in a new window.
Enter a filename for the hook XML file, and select if the hook will be applied to the Director or Broker. Enter
the name of a class in the hooks directory and click Update Properties to display an updateable property
list below. After you have entered any properties, click Save to edit the hook, or Cancel to revert to the last
saved version of the hook.

From the Actions control of each hook, you can Enable, Disable, Edit, or Delete an existing hook. Note
that the Manager does not need to be restarted after deploying the JAR. However, if you redeploy a
JAR, you must remove and re-add the hook for any new changes to take effect.
GridServer Developer’s Guide 93
•
•
•
•
•
•

9

Engine Hooks
Engine Hooks
Engine Hook implementation details are discussed in the JavaDoc documentation for the EngineHook class.
You will also find examples on creating an Engine Hook in the GridServer SDK, in the
examples/hooks/engine directory. The following is an example that initializes a JDBC database.

Example 11.1: JDBCHook.java
// Copyright 2002 DataSynapse, Inc. All Rights Reserved
package examples.hook;

import com.datasynapse.gridserver.engine.*;
import java.sql.*;
import java.util.*;

/*
 * This is an example of a hook that initializes data from a database.
 * The property "initialized" can be used to discriminate on jobs, so that
 * only engines that have initialized the data will take tasks.
 */

public class JDBCHook extends EngineHook {
 public void initialized() {
 try {
 initializeData();
 EngineSession.setProperty("initialized", "true");
 } catch (Throwable e) {
 System.err.println(e);
 }
 }

 // static method is used by the tasklet
 public static Vector getData() {
 return vData;
 }

 private void initializeData() throws ClassNotFoundException {
 System.out.println("initializing");
 Class cl = Class.forName(getDriver());
 System.out.println("Driver class:" + cl);

 boolean successful = false;
 do {

try {
 Connection conn = DriverManager.getConnection(getUrl(),

getUsername(), getPassword());
 PreparedStatement ps = conn.prepareStatement("select * from people");
 ResultSet rs = ps.executeQuery();
 System.out.println("rs:" + rs);
 while (rs.next())
 vData.add(rowToLine(rs));
4 Chapter 11 – Extending GridServer
•
•
•
•
•
•

This Document is Proprietary and Confidental

successful = true;
 } catch (Exception e) {
 System.out.println("JDBCHook: failed to retrieve data, will try
again.");
 }
 if (!successful) {
 try { Thread.sleep(getFrequency()); } catch (InterruptedException
ie) { break; }
 }
} while (!successful);
 }

static String rowToLine(ResultSet input) throws SQLException {
 StringBuffer buf = new StringBuffer();
 int cols = input.getMetaData().getColumnCount();
 for (int i=1; i <= cols; i++) {
 buf.append(input.getString(i));
 buf.append(' ');
 }

 buf.append('\n');
 return buf.toString();
 }

 public final void setUrl(String url) {
 _url = url;
 }

 public final String getUrl() {
 return _url;
 }

 public final String getDriver() {
 return _driver;
 }

public final void setDriver(String driver) {
 _driver = driver;
 }

 public final String getUsername() {
 return _user;
 }

 public final void setUsername(String user) {
 _user = user;
 }

 public final String getPassword() {
 return _pass;
 }

Example 11.1: JDBCHook.java (Continued)
GridServer Developer’s Guide 95
•
•
•
•
•
•

9

Engine Hooks
The class definition for the Hook must be contained in a JAR file in the shared classes directory (either in
deploy/resources/shared/jar on the Manager or the shared NFS mount as defined in the Engine
configuration) or in a Grid Library.

Hooks are added by adding the XML file to the deploy/resources/shared/hook directory, or adding
them to a Grid Library. You can add several different XML files to this directory (as opposed to the
method of having a single hooks.xml file, used in previous releases.) An example of the XML format
to use for your Hook is documented in the EngineHook JavaDoc. The following is also an example of the
XML to add to the hooks.xml file for the JDBC example given above.

 public final void setPassword(String password) {
 _pass = password;
 }

 public final void setFrequency(long frequency) {
 _frequency = frequency;
 }

 public final long getFrequency() {
 return _frequency;
 }

 private String _url;
 private String _driver;
 private String _user;
 private String _pass;
 private long _frequency = 5000;

 private static Vector vData = new Vector();
}

Example 11.2: XML for JDBCHook
<hook class="examples.hook.JDBCHook">
 <property name="username" value="sa"/>
 <property name="password" value=""/>
 <property name="url" value="jdbc:HypersonicSQL:hsql://%server%:2034"/>
 <property name="driver" value="org.hsql.jdbcDriver"/>
</hook>

Example 11.1: JDBCHook.java (Continued)
6 Chapter 11 – Extending GridServer
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Chapter 12

• • • • • •
 API Extensions

Introduction
This chapter covers classes that are extensions to the GridServer Tasklet API. The GridServer API
documentation covers this information in more detail.

Note: This material is covered in depth with code samples in the GridServer Object-Oriented Integration
Tutorial. This chapter is designed for readers who want a conceptual reference to the API extensions.

StreamJob and StreamTasklet
The service method of a standard GridServer tasklet uses objects for both input and output. These
TaskInput and TaskOutput objects are serialized and transmitted over the network from the Driver to
the Engines. For some applications, it may be more efficient to use streams instead of objects for input and
output. For example, applications involving large amounts of data that can process the data stream as it is
being read may benefit from using streams instead of objects. Streams increase concurrency by allowing the
receiving machine to process data while the sending machine is still transmitting. They also avoid the
memory overhead of deserializing a large object.

A StreamJob is a Job which allows you to create input and read output via streams rather than using defined
objects. A StreamTasklet reads data from an InputStream and writes to an OutputStream, instead of
using a TaskInput and TaskOutput. StreamJob writes input to a stream, and the Tasklet code on the
Engine reads data from this stream. In this way, the memory overhead on the Driver, Broker, and Engine is
reduced, since an entire TaskInput does not need to be loaded into memory for transfer or processing. The
StreamTasklet must be used with a StreamJob.

Use StreamTasklet and StreamJob when the amount of input or output data is large, and a tasklet can
process the data stream as it arrives. The service method of StreamTasklet reads its input from an
InputStream and writes its results to an OutputStream. When writing a StreamJob class, create an input
for a task by calling the createTaskInput method to obtain an OutputStream, then writing to and
closing that stream.

The TaskCompleted method of StreamJob is given an InputStream to read a task’s results. It is your
responsibility to close all streams given to you by GridServer.

DataSetJob and TaskDataSet
A data set is a persistent collection of task inputs (either TaskInput objects or streams) that can be used
across jobs using different Tasklets. The first time it is used, the data set distributes its inputs to Engines in
the usual way. But when the data set is used subsequently, it attempts to give a task to an Engine that already
has the input for that task stored locally. If all such Engines are unavailable, the task is given to some other
available Engine, and the input is retransmitted. Data sets thus provide an important data movement
optimization without interfering with GridServer’s ability to work with dynamically changing resources.
GridServer Developer’s Guide 97
•
•
•
•
•
•

9

The Propagator API
A TaskDataSet is a collection of TaskInputs that persist on the Manager as the input for any subsequent
DataSetJob. The TaskInputs get cached on the Engine for subsequent use for the TaskDataSet. This API is
therefore appropriate for doing repeated calculations or queries on large datasets. All Jobs using the same
DataSetJob will all use the TaskInputs added to the TaskDataSet, even though their Tasklets may differ.

Also, TaskInputs from a set are cached on Engines. An Engine that requests a task from a Job will first be
asked to use input that already exists in its cache. If it has no input in its cache, or if other Engines have
already taken input in its cache, it will download a new input, and cache it.

An ideal use of TaskDataSet would be when running many Jobs on a very large dataset. Normally, you
would create TaskInputs with a new copy of the large dataset for each Job, and then send these large
TaskInputs to Engines and incur a large amount of transfer overhead each time another Job is run. Instead,
the TaskDataSet can be created once, like a database of TaskInputs. Then, small Tasklets can be created
that use the TaskDataSet for input, like a query on a database. As more jobs are run on this session, the
inputs become cached among more Engines, increasing performance.

To create a TaskDataSet, first construct a new TaskDataSet, then add inputs to it using the
addTaskInput method. If you are using a stream, you can also use the createTaskInput method. After
you have finished adding inputs, call the doneSubmitting method. If a name is assigned using setName,
that will be used for subsequent references to the session; otherwise, a name will be assigned by GridServer.
The set will remain on the Manager until destroy is called, even if the Java VM that created it exits.

After creating a TaskDataSet, implement your Job using DataSetJob. The main difference is that to run
the Job, you must use setTaskDataSet to specify the dataset you created earlier. Note that the
executeLocally test method cannot be used with the DataSetJob.

The Propagator API
The Propagator API is an appropriate alternative to MPI for running
parallel computations which require inter-node communication.
Unlike most MPI implementations, Propagator implementations
can run over heterogeneous resources, including interruptible
desktop PCs.

A Propagator application is divided into steps, with steps sent to
nodes. Using adaptive scheduling, the number of nodes can vary,
even changing during a problem’s computation. After a step has
completed, a node can communicate with other nodes, propagating
results and collecting information from nodes that have completed
earlier steps. This checkpointing allows for fault-tolerant
computations.

The following diagram illustrates how nodes communicate at
barrier synchronization points when each step of an algorithm is
completed:

Using the Propagator API
The Propagator API consists of two classes, GroupPropagator
and NodeTasklet, and the Interface GroupCommunicator.
8 Chapter 12 – API Extensions
•
•
•
•
•
•

This Document is Proprietary and Confidental

• The GroupPropagator is used as the controller. It is created and used to create the nodes and the messaging
system used between nodes.

• The NodeTasklet contains the actual code that each node will execute at each step. It also contains
whatever code each node will need to send and receive messages, and send and receive the node state.

• The GroupCommunicator is the interface used by the nodes to send and receive messages, and to get and
set node state.

GroupPropagator
The GroupPropagator is the controlling class of the NodeTasklets and GroupCommunicator. You should
initially create a GroupPropagator as the first step in running a Propagator Job.

You can create a GroupPropagator and access the GroupCommunicator, like this:

GroupPropagator gp = new GroupPropagator("simple", nodes);
GroupCommunicator gc = gp.getGroupCommunicator();

This will enable you to communicate with nodes, and get or set their state.

Next, you will need to set the NodeTasklet used by the nodes. Given a simple NodeTasklet implementation
called TestPropagator that is passed the value of the integer x, you would do this:

gp.setNodeTasklet(new TestPropagator(x));

After you have defined a NodeTasklet, you can tell the nodes to execute a step of code by calling the
propagate method, and passing a single integer containing the step number you wish to run.

When a program is complete, the endSession method should be called to complete the session.

NodeTasklet
The NodeTasklet contains the actual code run on each node. The NodeTasklet code is run on each step, and
it communicates with the GroupCommunicator to send and receive messages, and set its state.

To create your own NodeTasklet implementation, create a class that extends NodeTasklet. The one method
your class must implement is propagate. It will be run when propagate is run in the GroupPropagator, and
it contains the code your node actually runs.

The code in the NodeTasklet will vary depending on the problem. But several possibilities include getting
the state of a node to populate variables with partial solutions, broadcasting a partial solution so that other
nodes can use it, or sending messages to other nodes to relay work status or other information. All of this is
done using the GroupCommunicator.

GroupCommunicator
The GroupCommunicator communicates messages and states between nodes and the GroupPropagator. It can
also transfer the states of nodes. It’s like the bus or conduit between all of the nodes.
GridServer Developer’s Guide 99
•
•
•
•
•
•

1

The Propagator API
The GroupCommunicator exists after you create the GroupPropagator. It’s passed to each NodeTasklet through
the propagate method. Several methods enable communication. These methods are described in more detail
in the JavaDoc API documentation. This list includes methods commonly used; there are variations
available to delay methods until a specified step or to execute them immediately.

 A Propagator API Example
The remainder of this chapter will explain how to use the Propagator API to solve a simple one-dimensional
heat equation. The state of each node will consist of a single number. On each step, each node will adjust its
state in proportion the difference between its current value and the value of its neighbors. The Java source
is included with the SDK in the project “simplepropagator”, so you can build, test, and modify the code.
This example uses three files: Test.java, which contains the main class, SimplePropagator.java, which
implements the NodeTasklet, and Result.java, which stores the results from each node.
Test.java This file starts like most other GridServer programs, except we import
com.livecluster.tasklet.propagator.*. Also, a Test class is created as our main class.

Method Description
broadcast Send a message to all recipients, except current

node.

clearMessages Clear all messages and states on Manager and
Engines.

getMessages Get the messages for current node.

getMessagesFromSender Get the message from specified node for current
node.

getNodeState Get the state of specified node.

getNumNodes Get the total number of nodes.

sendMessage Send the message to nodeId.

setNodeState Set the state of the node.

Example 12.1: Test Main Class
package examples.simplepropagator;

import com.livecluster.tasklet.propagator.*;
import com.livecluster.tasklet.util.*;
import java.lang.*;
import java.util.*;
import java.io.*;
import java.text.DecimalFormat;

public class Test {
 public static void main(String[] args) throws Exception {
00 Chapter 12 – API Extensions
•
•
•
•
•
•

This Document is Proprietary and Confidental

The main method begins by creating a GroupPropagator with the name “simple” and a hard-coded number
of nodes. A new SimplePropagator is created and set into the GroupPropagator, which is the code for the
NodeTasklet. SimplePropagator is described in the next section. Then, a GroupCommunicator gc is assigned
with the GroupPropagator method getGroupCommunicator.

The boundary conditions are set by initializing the states of the leftmost and rightmost nodes. Then, for each
step, the GroupPropagator’s propagate method is called and the results are printed. We finish by ending the
session.

The printResults method is given the return value of propagate, which consists of an array of Result
objects. Since these may be returned in any order, they are sorted by node ID. Then they are formatted and
displayed.

Example 12.2: GroupCommunicator Assignment
 int nodes = 6;
 int steps = 12;
 GroupPropagator gp = new GroupPropagator("simple", nodes);
 try {
 gp.setNodeTasklet(new SimplePropagator(steps, 0.5));
 GroupCommunicator gc = gp.getGroupCommunicator();

Example 12.3: Main Loop
 // Set initial state
 gc.setNodeState(0, 0, new Double(10));
 gc.setNodeState(nodes-1, 0, new Double(8));

 for (int i = 0; i < steps; i++) {
 Object[] results = gp.propagate(i);
 printResults(i, results);
 }
 } finally {
 gp.endSession();
 }
 }

Example 12.4: printResults
 static void printResults(int step, Object[] results) {
 Arrays.sort(results);
 DecimalFormat fmt = new DecimalFormat("###0.00 ");
 System.out.print(step + "\t");

 for (int i = 0; i < results.length; i++) {
 double d = ((Result) results[i]).value;
 System.out.print(fmt.format(d));
 }
 System.out.println();
 }
}

GridServer Developer’s Guide 101
•
•
•
•
•
•

1

The Propagator API
TestPropagator.java. The class TestPropagator is defined with a constructor that is passed the number of
steps and a value used to calculate the equation:

SimplePropagator’s propagate method is where all the work is done. It uses the GroupCommunicator to get its
state for this step and the messages its neighbors sent to it from the previous step. It uses this information to
calculate its next state.

The node then sets its state for the next step and sends its state to its immediate neighbors. Finally, it returns
its state along with its node ID in a Result object:

Example 12.5: TestPropagator Class
package examples.simplepropagator;

import com.livecluster.tasklet.propagator.*;

class SimplePropagator extends NodeTasklet {
 SimplePropagator(int steps, double fac) {
 _steps = steps;
 _factor = fac;
 }

Example 12.6: propagate and printResults Methods
 public Object propagate(int nodeId, int stepId, GroupCommunicator gc)

throws Exception {
 // Get our own state from the previous step.
 double current = toDouble(gc.getNodeState());
 double next = current;
 // Get neighbors' messages containing their previous values.

 if (nodeId != gc.getNumNodes() - 1) {
 double right = toDouble(gc.getMessagesFromSender(nodeId+1)[0]);
 next += _factor*(right - current);
 }
 }

 static void printResults(int step, Object[] results) {
 Arrays.sort(results);
 DecimalFormat fmt = new DecimalFormat("###0.00 ");
 System.out.print(step + "\t");

Example 12.7: Inform Neighboring Nodes, Set State
 // Set our state for the next step.
 Double nextState = new Double(next);
 gc.setNodeState(nextState);

 // Inform our neighbors for the next step.
 if (stepId != _steps-1) {
 if (nodeId != 0)
 gc.sendMessage(nodeId-1, nextState);
 if (nodeId != gc.getNumNodes()-1)
 gc.sendMessage(nodeId+1, nextState);
 }
 return new Result(nodeId, next);
 }
02 Chapter 12 – API Extensions
•
•
•
•
•
•

This Document is Proprietary and Confidental

Result.java The Result class is a simple container for a node ID and a double value. Its compareTo method
facilitates sorting by node ID.

Here is the output from the program:

 private static double toDouble(Object o) {
 if (o == null)
 return 0;
 else
 return ((Double) o).doubleValue();
 }

 private int _steps;
 private double _factor;
}

Example 12.8: Result.java
package examples.simplepropagator;

class Result implements Comparable, java.io.Serializable {
 int nodeId;
 double value;

 Result(int n, double d) {
 nodeId = n;
 value = d;
 }

 public int compareTo(Object o) {
 return this.nodeId - ((Result) o).nodeId;
 }
}

Example 12.9: Program Output
0 10.00 0.00 0.00 0.00 0.00 8.00
1 5.00 5.00 0.00 0.00 4.00 4.00
2 5.00 2.50 2.50 2.00 2.00 4.00
3 3.75 3.75 2.25 2.25 3.00 3.00
4 3.75 3.00 3.00 2.62 2.62 3.00
5 3.38 3.38 2.81 2.81 2.81 2.81
6 3.38 3.09 3.09 2.81 2.81 2.81
7 3.23 3.23 2.95 2.95 2.81 2.81
8 3.23 3.09 3.09 2.88 2.88 2.81
9 3.16 3.16 2.99 2.99 2.85 2.85
10 3.16 3.08 3.08 2.92 2.92 2.85
11 3.12 3.12 3.00 3.00 2.88 2.88

Example 12.7: Inform Neighboring Nodes, Set State (Continued)
GridServer Developer’s Guide 103
•
•
•
•
•
•

1

The Propagator API
04 Chapter 12 – API Extensions
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Appendix A

• • • • • •
 Task Instrumentation

Introduction
This Appendix describes the instrumentation phases produced by enabling Task instrumentation. To enable
Task instrumentation, see “Enabling Enhanced Task Instrumentation” on page 89 of the GridServer
Administration Guide.

NOTE: Task instrumentation should be used for development purposes only, and not in production
environments. It will slow down the Manager significantly, and also requires additional disk space, so it is
important to disable it after you have completed using it.

All instrumentation phases have an absolute time marker, which is the time at the start of the action. Actions
may also have a relative duration marker, if it is possible to measure the duration. The times are marked
according to the client’s clock.

Instrumentation phases have the following syntax:

[Client] [Action] [Object]

Client
The Client of an instrumentation phase can be one of the following:

• Engine
• Driver
• Broker

Action
The Action of an instrumentation phase can be one of the following:

Action Description

Send A send of a message. The absolute time is the start time of the send, and there may
or may not be a duration value.

Receive A receive of a message. The absolute time is the end of the retrieval. There is no
duration value.

Retrieve A receive, with a measurement of the duration. The absolute time is the time at
which the retrieval started.

Serialize The conversion of an in-memory object to its serialized format, for transfer to
another client.
GridServer Developer’s Guide 105
•
•
•
•
•
•

1

Phases
Object
The Object of an instrumentation phase can be one of the following

Phases
The following is the complete list of all phases.

Driver-side

Deserialize The conversion of a serialized object to an in-memory object.

Write The writing of data to a file, typically for DDT.

Download The downloading of data from another client.

Call A call to a user-implemented method.

Load A native library load.

Object Description

Jar The JAR file, which is only used for dynamic class loading.

Instance The instance object, which is either the tasklet or the initialization data.

Input The input data or message.

Output The output data or message

Update The update data, message, or call

Checkpoint Checkpoint data, if checkpointing is enabled.

Library A native library

Initialize The initialization call

Service The service call

Completed The callback on completion

Failed The callback on failure

Serialize The call to a user-implemented native serialize method

Deserialize The call to a user-implemented native deserialize method

Phase Description

Driver Serialize Jar The serialization of the JAR file when the JAR file is set.

Driver Serialize Instance The serialization of the service instance object.

Action Description
06 Appendix A – Task Instrumentation
•
•
•
•
•
•

This Document is Proprietary and Confidental

Engine-side

Driver Serialize Input The serialization of the service input.

Driver Send Input The time of the Driver send of the input message to the Broker. Keep in
mind that more than one input may be sent in one message.

Driver Call Completed The callback of a successful task.

Driver Call Failed The callback of a failed task.

Driver Download
Output:

The download of output over DDT.

Driver Deserialize
Output

 The deserialization of output over DDT.

Driver Retrieve Output The time at which the Driver receives the output message from the
Broker. Keep in mind that more than one output may be retrieved in one
message

Phase Description

Engine Receive Input The time at which the Engine receives the input message from the
Broker.

Engine Download Instance The download of the service instance object.

Engine Deserialize Instance The deserialization of the service instance object.

Engine Call Initialize The initialization call.

Engine Download Update The download of update data.

Engine Deserialize Update The deserialization of update data.

Engine Call Update The update call.

Engine Download Input The download of the input.

Engine Deserialize Input The deserialization of the input.

Engine Download Checkpoint The download of checkpoint data from another Engine.

Engine Call Service The service call.

Engine Serialize Output The serialization of the output.

Engine Send Output The time at which the Engine sends the output message to the
Broker.

Phase Description
GridServer Developer’s Guide 107
•
•
•
•
•
•

1

Phases
Broker-side

DDT file writes

Native

Phase Description

Broker Receive Input The time at which the Broker received the input from the Driver.

Broker Send Input The time at which the Broker sent the input to the Engine.

Broker Receive Output The time at which the Broker received the output from the Engine.

Broker Send Output The time at which the Broker sent the output to the Driver.

Broker Remove Output The time at which the Broker removed the output due to the
acknowledgement from the Driver.

Phase Description

[Client] Write Input: The input file write.

[Client] Write Output: The output file write.

[Client] Write Instance The instance object write.

[Client] Write Jar The JAR file write.

[Client] Write Update The update data write.

Phase Description

Engine Load Library The load of a native dynamic library.

Driver Call Serialize The native object serialize call.

Driver Call Deserialize The native object deserialize call.
08 Appendix A – Task Instrumentation
•
•
•
•
•
•

This Document is Proprietary and Confidental

 Appendix B

• • • • • •
 SOAPActions

This section is provided as a reference for SOAPActions defined for Services exposed as Web Services. Since
the actions are automatically attached to the associated operations, it is not necessary for a user of the Service
to know the meaning of each action.

Action Description
init Indicates that this operation will create a new session. The return value of the operation is

the URL if the new instance. The name of the operation has no meaning.

destroy Indicates that this operation will destroy the session. If this session is the default session, a
SOAPFault is generated. The name of the operation has no meaning.

appendState Indicates that this operation is an append state operation. The operation name must match the
method name.

setState Indicates that this operation is a set state operation. The operation name must match the
method name.

submit Indicates that this operation is an asynchronous submission. The return value is the ID of the
session. The name of the operation must be [method name]_Async.

collect Indicates that this operation should collect the result of the given ID, or the next available if
the given ID is null. The name of the operation has no meaning.

[no action] Indicates that the operation is a synchronous operation. The operation name must match the
method name.
GridServer Developer’s Guide 109
•
•
•
•
•
•

1
10 Appendix B – SOAPActions
•
•
•
•
•
•

This Document is Proprietary and Confidental

Index

Symbols
.NET 27

compiler notes 20
debugging Engines 18
Driver upgrades 20

[GS Manager Root] 11

A
Administration Tool

help 10
AppDomains 27

.NET 27
asynchronous submission

Web Services 35–36
authentication

Web Services 36

B
bcancel command 52
bcoll command 51
bsub command 50

C
C++

compiler version 19–20
multithreading 19
using Data References with 40

collection
NEVER 42
Service 40

container
binding 26
definition 26

D
data movement 79

examples 81
mechanisms 79
principles of 79

Data References
definition 39
using with C++ 40
using with GridCache 73

debugging
on Engines 18

discriminators
declaration in PDS scripts 62
for Engines 85
introduction 85
setting 85, 86

Driver
.NET, upgrades 20
data transfer with Engines 79

E
Engine

data transfer with Drivers 79
discriminators 85
Hook 94
pinning 43
properties 86

Engine Hook 94
Engines

debugging 18
environment variables

within a Service invocation 31

F
fault handling

Web Services 36

G
GCC 3.2

support 19–20
Grid Library

creating 14
definition 14

GridCache
API 77
clear method 77
constructor 77
creating 77
get method 77
GridServer Developer’s Guide 111
•
•
•
•
•
•

1

invalidation handlers 78
keys 77
put method 77
remove method 77
using with Data References 73

GridServer
programming options 13

GridServer Web Services
definition 89
using 92

H
Hook

Engine 94
Manager 93

I
installing

PDriver 49
interop types

Service 27

J
Java

debugging Engines 18
Java API

introduction 45
Job

comparison with Service 47
description 46
implementing 46

JobOptions object 38, 46

L
Language interoperability 27
logging

format 15
levels 15
overview 15
viewing Engine logs

Engine
viewing logs 15

writing to logs 16

M
Manager

Hook 93

O
options

Service 38

P
PDriver

bcancel command 52
bcoll command 51
bsub command 50
definition 14
examples 71
installing 49
introduction 49
using 49

PDS scripts
discriminator declarations 62
introduction 53

pinning
Engine 43

R
registering

Service Type 26

S
Service

calling conventions 24
collection 40
comparison with Job 47
context 38
environment variables 31
groups 39
interop types 27
introduction 13
method compliance 24
no collection 42
options 38
proxy generation 37
12 – Index
•
•
•
•
•
•

This Document is Proprietary and Confidental

Shared 38
using 23

Service groups 39
Service Type

registering 26
ServiceClient Web Service

using 92
Sevice routing

Web Services 34
Shared Services 38
state updates

with Web Services 36

T
TaskInput

definition 45
Tasklet

definition 14, 45
Tasklet API

introduction 45
TaskOutput

definition 45

V
VC7

support 19–20

W
Web Service

introduction 33
Web Services

advanced functionality 34
asynchronous submission 35–36
authentication 36
fault handling 36
functionality 34
Service Instance creation/destruction 35
Service Routing 34
state updates 36

Windows DLL
debugging Engines 18

WSDL
proxy generation 37
URL for Service 34

X
xmlSerialization,definition 26
GridServer Developer’s Guide 113
•
•
•
•
•
•

1
14 – Index
•
•
•
•
•
•

This Document is Proprietary and Confidental

	Confidentiality and Disclaimer
	Contents
	Introduction
	Before you begin
	GridServer 4.2 Documentation Roadmap
	GridServer Guides
	Other Documentation and Help

	Document Conventions

	GridServer Application Development
	GridServer Programming Options
	Services
	The Tasklet API
	PDriver

	Resource Deployment
	Logging and Debugging
	Log Overview
	Viewing Engine Logs
	Writing to Logs
	Debugging Engines

	C++ Compiler Version Notes
	Changing the C++ Compiler used with CPPDriver
	C++ Multithreading Requirement
	VC++ settings for building Job executable
	VC++ settings for building tasklet library
	Other C++ Notes

	.NET Compiler Notes
	.NET Driver Upgrades

	Creating Services
	Introduction
	Steps in Using a Service
	Service Method Compliance
	Java/.NET Services
	C++ Services
	Command Services

	Client Calling Conventions
	Java/.NET Client
	C++ Client
	SOAP Client

	Registering a Service Type
	Container Binding
	.NET AppDomains

	Language Interoperability
	Strings and Byte Arrays
	Object Conversion from Strings and Byte Arrays
	XML Serialization for Java and .NET
	Interoperable Types for XML Serialization and SOAP Clients

	Maintaining State
	Initialization
	Cancellation
	Destruction
	Service Instance Caching
	Invocation Variables

	Accessing Services
	Introduction
	The Service API
	Web Services
	Service Routing
	Web Service Functionality
	Advanced Functionality
	Service Instance Creation/Destruction
	Asynchronous Submission
	State Updates
	Fault Handling
	Authentication

	Proxy Generation and Services as a Web Service Binding
	Java Proxy Example
	.NET Proxy Example

	Service Options
	Service Session Context
	Shared Services
	Service Groups
	Data References
	C++ Data References

	Service Collection
	Deferred Collection
	No Collection Service

	Engine Pinning

	The Tasklet API
	Introduction
	The Tasklet API
	TaskInput and TaskOutput
	Tasklet
	Job
	JobOptions
	Job and Service Comparison
	Summary

	PDriver
	Installing PDriver
	Resource Deployment

	PDriver Commands
	The pdriver Command
	The bsub Command
	The bcoll Command
	The bstatus Command
	The bcancel Command

	About PDS Scripts
	PDS Basics
	PDS Structure
	The Depends Statement
	The Include Statement
	Lifecycle Blocks
	prejob
	pretask
	task
	posttask
	postjob
	The Options Block
	The Discriminator Block
	The Schedule Block

	Variables, Types and Expressions
	Basics
	Scoping
	Variable Substitution
	Expressions
	Arrays
	Builtin Variables

	Statements
	Builtin Commands
	The If Statement
	The For and Foreach Statement
	MPI Jobs
	Shell Directives in Heterogeneous Environments

	PDriver Examples

	GridCache
	Introduction
	General Capabilities
	API
	Modes
	Cache Configuration and Access
	Data Storage
	Attributes
	Consistency/Synchronization
	Cache Loaders
	Cache Loader Write-through and Bulk Operations
	Notification
	Disk/Memory Caching
	Cache Region Scope

	Using The GridCache API
	GridCache constructor with CacheFactory
	Put and Get
	Keys
	Remove
	Clear
	Invalidation handlers

	Fault Tolerance and GridCache

	GridServer Design Guidelines
	Data Movement
	Principles of Data Movement
	Data Movement Mechanisms
	Data Movement Examples

	Service or Task Duration
	Engine Interruption and Smoothing
	Auto-packing
	Summary

	Using Discriminators
	Introduction
	Engine Discrimination
	Setting Discriminators
	Engine Properties
	Default Properties
	Custom Properties
	Creating a New Property
	Setting a Property Value

	Session Properties
	PDriver Discrimination
	Dependencies
	Creating Dependencies
	Administering Task Dependencies

	GridServer Admin API
	Introduction
	Documentation for the GridServer Admin API
	Access Level Requirements and Availability for Admin API
	Using The ServiceClient Web Service
	Using the Admin API over SOAP

	Extending GridServer
	Introduction
	Manager Hooks
	Engine Hooks

	API Extensions
	Introduction
	StreamJob and StreamTasklet
	DataSetJob and TaskDataSet
	The Propagator API
	Using the Propagator API
	GroupPropagator
	NodeTasklet
	GroupCommunicator
	A Propagator API Example
	TestPropagator.java

	Introduction
	Client
	Action
	Object

	Phases
	Driver-side
	Engine-side
	Broker-side
	DDT file writes
	Native

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

